
Organizing the Fuzziest Concerts for Trolls World Tour
Kuan-Ting Lu

DreamWorks Animation
tlu@dreamworks.com

Figure 1: A hard rock concert in Trolls World Tour. ©2020 DreamWorks Animation. All rights reserved.

ABSTRACT
The unique, stylized look of Trolls World Tour presented complexity
challenges to our rendering pipeline. Each asset was covered in
high-density fuzz, with millions of curves processed each scene.
We revisited the way we handle curve geometries with new opti-
mization methods and a new caching system to achieve interactive
loading speeds and scalable render capacity in our lighting tools.

CCS CONCEPTS
• Computing methodologies → Computer graphics.

KEYWORDS
lighting, instancing, memory, caching
ACM Reference Format:
Kuan-Ting Lu. 2020. Organizing the Fuzziest Concerts for Trolls World
Tour. In Proceedings of SIGGRAPH 2020 Talks. ACM, New York, NY, USA, 2
pages. https://doi.org/10.1145/3388767.3407365

1 INTRODUCTION
The world of Trolls required high scene complexity, with each asset
covered in high-density fuzz, from woolly plants growing on carpet
forest floors to the wild growing hair of each individual Troll. In

© 2020 DreamWorks Animation, L.L.C. Originally published in SIGGRAPH 2020
Talks, https://doi.org/10.1145/3388767.3407365

the final hard rock sequences of the film, millions of high-fidelity
curves rested on the fiery concert venue and on a crowd of ten
thousand Trolls, totaling hundreds of millions of CVs (Figure 1). On
the first Trolls movie, geometry shaders were used to achieve the
fuzz. In order to achieve the ideal look, we needed the ability to
have art-directable strands of hair that could be viewed at multiple
stages in the pipeline. It was quickly decided that each hair needed
to be distinctive curve geometry.

Our first approach was to leverage the scene processing power
of our lighting toolset to create a procedural solution to geometry-
based fuzz directly in the lighting tool. Artists defined several
clumps of curves that acted as the template of the look of an asset’s
fuzz. The clumps of curves were instanced at multiple levels and
distributed on the surface of the asset’s geometry. The approach
was deferred to render time, which saved memory and disk space,
and kept artist’s working sessions lightweight. However, the nested
instancing distribution was limited and it was difficult to art direct
and achieve the desired look. The curves needed to be authored
traditionally by artists.

As production progressed to finalized assets and fully populated
scenes, the complexity of the scenes grew significantly, as each
asset was accompanied by dense, high-resolution fuzz. Trolls were
characterized by a head full of hair and felt-like skin composed of
millions of curves (Figure 2). Initial renders ran out of memory and
it was apparent that further optimizations and a scalable approach
to moving data through the pipeline was needed. The lighting
department needed a way to view and work interactively with
these heavy scenes, and see the fuzz as it was intended by upstream
departments.

https://doi.org/10.1145/8888888.7777777

SIGGRAPH 2020 Talks, July 2020, Washington, D.C., USA Lu

Figure 2: Trolls’ felt-like skin covered with fuzz.

2 SCENE DESCRIPTION
To manage the vast amount of curve data, we leveraged our internal
Procedural USD schema [Blevins and Murray 2018] that could point
to any arbitrary data and be passed along to the renderer or read
into the lighting tool. This allowed dynamic choices between speed
and memory by choosing to pay the cost of evaluating the curves
interactively or during render time. Since the underlying data was
not part of the USD stage, the USD files were compact and stage
loading times fast. As USD procedural data was loaded into the
lighting tool, custom operators resolved them into raw curves data
for viewing and editing. We then created a custom procedural for
our renderer that was able to reference this data directly during
rendering, which prevented copying of the data, improving speed
and reducing peak memory usage.

3 OPTIMIZING CURVES
The vast number of curves burdened interactivity for artists and
were well beyond the memory limitations of our rendering capacity.
Traditional optimization methods such as frustum culling were in-
sufficient, as in many cases there were millions of curves included
within the frustum. Given that Trolls are tiny creatures, large ob-
jects such as the ground plane or a massive tree could include a
significant amount of curves that are not visible. Other traditional
workflows such as instancing and LOD partitioned crowds were
used where possible, however given the vast diversity and complex-
ity of the Trolls world it was a limited solution. Solely relying on
partitioning would be extremely cumbersome.

Expanding the traditional workflow, we implemented a series
of curve operators that ran on every fur and hair procedural by
default. We extended frustum and volume culling to a much more
precise level within each geometry, culling out individual strands
of hair on each asset. We added an occlusion based culling that
utilized the same raytracing method as our renderer, and culled out
invisible curves. These provided mass culling solutions at a more
granular level and reduced wasted resources, especially for massive
objects that extend well outside the frustum. For LOD, in addition to
density reduction operations, we added culling methods granular
to the CV level, able to simplify individual curves. Artists have
granular control over the density of fuzz and complexity of each
individual curve to obtain the desired look. Each of these operators
ran deferred for higher interactivity and the ability to pick and
choose any combination of the operators available. We exported
these same operators to USD via a custom USD schema named
OpAPI. This allowed artists across all departments to render the

optimized scenes outside of the lighting tool in our USD rendering
engine, and maintains parity between what the lighting department
and upstream departments (layout, animation, crowds) see in their
own renders.

4 FAST DYNAMIC CACHING
Resolved curve geometry could additionally be cached to disk.
Our default lighting package ships with a caching mechanism that
caches attribute data to binary data in memory. We found the seri-
alization of binary data to be a bottleneck in cache performance,
and caching to memory limited cache usage to each work session.
We extended the caching mechanism with our own disk based, self
evicting cache. While the shipped cache took more than 77 seconds
to serialize around 2 gigabytes of data, our cache reduced that same
serialization to about 1 second.

As our multi-threaded scene traversal processed each curve ge-
ometry, the optimizations were applied, results cached, and the
memory released while new geometry began the process again.
This method was able to reduce the peak memory usage consider-
ably and also reduced disk usage while retaining parallelism. Once
available, the cache accelerated loading of geometry and subsequent
renders became much faster and used significantly less memory; it
even allowed millions of curves to be loaded and viewed at interac-
tive speeds. Lighters could view the curves in context interactively,
and further optimization or culling decisions could be made. The
system allowed the same asset’s cache to be shared between each
session, and potentially across shots and sequences. As the render
farm could access the same cache directory, the same benefits ap-
plied to farm renders. Static assets were further optimized and only
generated once between all frames. With the new cache in place, a
relatively small environment consisting of about 400 million CVs
saw scene build times reduced from 47 seconds to 21 seconds, and
peak memory usage reduced from 41 to 15 gigabytes.

5 CONCLUSION
The complexity of Trolls World Tour challenged us to think about
memory from the beginning of the pipeline. We needed a scalable
pipeline to handle theway data was authored and passed, previewed
across departments, loaded into the lighting tool, and rendered.
We developed multiple points of optimizations, instancing, culling
operators, disk caches, and custom procedurals which all needed to
work together. As complexity in future films increase, these tools
could provide a foundation for future optimized workflows.

ACKNOWLEDGMENTS
Alex Gerveshi, Sean Looper, Ali Khouzadi, Niel Lopez, Josh Miller,
Cherry Chen, Alan Blevins, Garrett Broussard, Jonathan Ciscon,
Chris Edwards, Chris Sprunger, Christy Page

REFERENCES
Alan Blevins and Mike Murray. 2018. Zero to USD in 80 Days. In ACM SIGGRAPH

2018 Talks (SIGGRAPH ’18).

	Abstract
	1 Introduction
	2 Scene Description
	3 Optimizing Curves
	4 Fast Dynamic Caching
	5 Conclusion
	Acknowledgments
	References

