Enhancing the Realism of Procedural Wind on Curves with
Collision, Shielding, and Gusts

Arunachalam Somasundaram
DreamWorks Animation

Figure 1: Procedural wind blowing from screen right to left a) without collisions (causes the fur to crash through the skin), b)
with only collisions and no shielding, and c) with both collisions and shielding (shielded areas are tinted with brown color).

ABSTRACT

Curves are traditionally used to represent assets such as fur and
grass in CG. Applying noise fields to create procedural wind on
curves has been an attractive method for its speed and variability.
However, this makes the wind appear procedural, lacking in both
its dynamic nature and its realistic interaction with objects. In this
talk, techniques are presented to enhance the realism of procedural
wind with collisions, shielding, and gusts. These techniques are
in use in DreamWorks’ productions providing significant realistic
control over the wind.

CCS CONCEPTS

« Computing methodologies — Procedural animation; Col-
lision detection.

KEYWORDS
wind, gust, curves, fur, procedural animation, realism, collision

ACM Reference Format:

Arunachalam Somasundaram. 2019. Enhancing the Realism of Procedural
Wind on Curves with Collision, Shielding, and Gusts. In Proceedings of
Siggraph 2019. ACM, Los Angeles, CA, USA, 2 pages. https://doi.org/10.1145

1 INTRODUCTION

There are several types of 3-D noise fields (such as Perlin, Billow,
or Wavelet) [Lagae et al. 2010] that can be applied to curves to
add wind effects. This procedural approach is enticing for a variety
of reasons including speed, low memory, control, variability, and
evaluation at any time frame independent of other time frames.

© 2019 DreamWorks Animation, L.L.C. Originally published in Siggraph 2019
Talks, https://doi.org/10.1145

However, using noise fields makes the wind look procedural
overall. Realistic wind is dynamic in nature and it can occur as
varying gusts. Also, the curves must physically and realistically
collide with collision meshes, such as the growth skin. Several fur
curves will also be shielded from the wind by collision objects
amounting to receiving less wind. Adding collision, shielding, and
gusts enhances the realism of procedural wind on curves.

2 BASIC PROCEDURAL CURVE WIND

Applying noise field values to directly offset curve point positions
has issues. Further post processing is needed, such as applying
length correction to the curve segments. Also, the curve topology
needs to be taken into account to make the curves appear more like
they are acted upon by wind than just a noise field offset.

In our approach, we use a custom node that can rotate the curve
segments hierarchically based on calculated directions, starting
from the root segment. Let P;;, be a curve’s tip point and P; be
a segment’s start point. At that segment, we calculate a direction
dirseg = dir,,jnq+dirnoise, where dir,,;, 4 is the wind’s main direc-
tion, and dirpoise is the noise field vector. Then, a quaternion Q is
calculated from rotation of dir; jp to dirseq, where diryjp = Pyip—P1.
Q is used to rotate all the points of the curve after Pj, pivoting at
P;. Parameters globalyorate and rampyrorqre are used to scale the
rotation angles globally and along the segments respectively. The
noise of any curve point P is sampled at a point Ppgjse, where
Puoise = Proot + (diry,ing * lenp) = waviness. Proor is the curve’s
root point, lenp is the curve’s length up to the point P, and the
waviness parameter can be used to offset the noise field sampling
position from P, for all the points along that curve. An appro-
priate waviness value will cause a ripple or wavy effect to travel
through the length of the curve. The hierarchical curve segment
rotational approach, along with the ramp,orqre and waviness pa-
rameters, take into the account the curve topology and provide more
artist control along the length of the curve. A per point envelope
attribute (defaults to 1.0) is provided to scale the rotation amount.


https://doi.org/10.1145
https://doi.org/10.1145

Siggraph 2019, July 28 - Aug 1, 2019, Los Angeles, CA

3 MESH COLLISION

The technique described below visually emulates the effect of the
curves bending around colliders (like wind would flow around) to
reach towards the wind deformed positions.

To resolve collisions, the curve segments are incrementally ro-
tated (using quaternions) from their original position towards the
wind deformed position until the stop condition (conditions;ep) is
reached, which corresponds to either a) a collision object hit, or b)
the wind deformed position is reached. For a curve segment Seg,
(with vertices V1 and Vy2), vertex V2 and all vertices further down
the curve are rotated about vertex V,1 until the conditions;op is
reached for that segment. While this resolves collision for Segq,
this can cause curve segments further down Seg, to interpenetrate
the collision object. For a curve segment Seg;, (with vertices V3
and V) that already interpenetrates the collision object because of
a prior segment rotation, vertex V3, and all vertices further down
the curve are rotated out of the collision object until Seg;, collision
is resolved. This also uses the fact that when one segment is fin-
ished resolving collision, the next segment further down has its
starting vertex (which is the ending vertex of the prior collision
resolved segment) to be collision free. The algorithm iterates over
each curve segment starting from the root segment and ending at
the tip segment. The root of the curve is slightly offset (using the
of fsetroor parameter) from the growth skin surface, so the first
segment can also undergo collisions similar to other segments. The
number of steps to incrementally rotate can be controlled using the
rotationsteps parameter. An offset scale parameter, of fsetscqe,
is also provided to offset the wind deformed curve vertices from
the growth skin along the closest point skin normal. This can be
used to try to maintain the original offset (volume) of the curves
(of fsetscqre = 1.0) or produce compression effects such as when
the wind pushes the curves against the skin (of fsetscq7e < 1.0).

4 WIND SHIELDING

Curves shielded from the wind by colliders receive less wind. For
every point P of a curve with n vertices, a ray R is cast from a point
Pyffser in the direction of the wind windg;, (normalized vector),
where Pyrrser = P —windg;, * of fset. The of fset parameter can
be used to set the distance from which the wind is blowing from.
If the ray R, starting at point Pyffe, hits a mesh geometry colli-
sion object (currently curve collisions are ignored) on its way to its
corresponding curve point P, a counter county;, is incremented for
that curve. The proportion of the curve vertices that are shielded,
alphacyrye, is calculated, where alphacyrve = county;, /n. Then,
alphacyrye is scaled by an artist specified shield parameter to ob-
tain envgp;ie1q. The procedural wind node’s envelope attribute is
scaled by envgp ;.14 to obtain the shielding effect.

5 WIND GUSTS

The appearance of wind gusts can be obtained procedurally or
manually (if precise artistic direction is needed). In the procedural
method, randomized spheres of influence are sent in the direction of
the wind from a plane perpendicular to the wind direction and off-
set at an artist specified distance. A sphere’s influence is maximum
(1.0) at its center and falls off to 0.0 at its boundary, and each sphere
corresponds to a gust of wind. Parameters such as num_gusts,

Arunachalam S.

Figure 2: A manual gust control and envelope visualized

radius_range, radiusNoise_range, speed_range, startFrame_range,
life_range, and decay_range control the number of gusts and the
range of values that control the spheres’ size, shape, speed, origin
time, life, and decay respectively. A dynamic and organic wind
motion can be obtained using this method. In the manual method,
the artist is provided with the ability to send gusts of wind where
the influence of any gust is controlled by control objects such as
spheres or in and out cubes which can be rotated, translated, and
scaled in any direction and precisely keyed by the artist. The influ-
ence within and from the boundary of the control objects can be
set by an artist specified ramp. Highly art directed wind gusts can
be achieved using this method. The influence of the control objects
is used to add to the curve point’s envgys; value which is then used
to scale the procedural wind’s envelope attribute (clamped to 1.0). If
needed, a simple curve jiggle simulation is run after the application
of wind to soften the influence of the passing gust control objects.

6 IMPLEMENTATION

The procedural wind and nodes that add realism were implemented
in a node based procedural commercial package. The nodes were
built using C++ and the package’s expression language, and are
multi-threaded. Curve_Wind node produces the actual curve wind.
Curve_Wind_Gusts and Curve_Wind_Shielding nodes set the en-
velope attribute on the curve points before feeding them to the
Curve_Wind node. If needed, the Curve_Jiggle node is then used
to run the jiggle simulation during gusts. The Curve_Wind_Collision
node finally performs the collision on the wind deformed curves.

7 CONCLUSION AND RESULTS

Adding collision, shielding, and gusts to procedural wind is an
attractive approach to capture the dynamic nature of the wind and
the physical collision aspects of it while also benefiting from the
advantages of proceduralism. This has provided the artists with
significant control over the wind. For 10,000 curves (~50,000 CVs) ,
the entire process runs at about 5 fps on 30 CPUs. This technique
has been used in DreamWorks’ productions Bilby and How to Train
Your Dragon: The Hidden World, and is in use in current productions.

REFERENCES

A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis, K. Perlin,
and M. Zwicker. 2010. A Survey of Procedural Noise Functions. Computer Graphics
Forum (2010). https://doi.org/10.1111/j.1467-8659.2010.01827.x


https://doi.org/10.1111/j.1467-8659.2010.01827.x

	Abstract
	1 Introduction
	2 Basic Procedural Curve Wind
	3 Mesh Collision
	4 Wind Shielding
	5 Wind Gusts
	6 Implementation
	7 Conclusion and Results
	References

