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Figure 1: Feathers created using Hummingbird

ABSTRACT

This talk presents DreamWorks’ Feather System Hummingbird,
which is used for grooming body feathers and modeling scales
interactively in real time. It is also used for feather motion such
as secondary motion or wind, for feather special effects such as
ruffling or puffing up, and for feather finaling. The system has been
used in several shows at DreamWorks including How to Train Your
Dragon 2, Bilby, and How to Train Your Dragon: The Hidden World.

CCS CONCEPTS

+ Computing methodologies — Shape modeling; Physical
simulation; Procedural animation.
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1 INTRODUCTION

A bird typically consists of tens of large wing and tail feathers, and
thousands of body feathers. This large quantity of body feathers
in close proximity make feather grooming and feather motion a
challenge. The feathers need to be interpenetration-free in their
layout, wind effects need to be added during flight, and adding
secondary motion enhances the beauty of the birds in motion.
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2 GROOMING

The wing and tail feathers are modeled and rigged for animation,
and the body feathers are created by Hummingbird. The interactive
feather grooming is procedural in nature. First, the roots/follicles of
the feathers are distributed uniformly as points on the skin based
on painted density. Next, feather attributes are set on the follicles
using either custom volumetric regions of influence or by painting
onto the skin and transferring by proximity. A feather at this stage
is represented as a simple mesh surface. The system currently takes
up to three topologically similar feather model inputs from which
the entire set of body feathers can be created. Any instanced feather
is a blend [Seddon et al. 2008] between these models. The blending
value (Blend attribute) is specified by painting a color (rgb) onto the
skin surface; The Direction attribute specifies the initial direction
of alignment for each feather; Scale controls the size (length and
width); Lift is used to raise or lower the feather away/onto to the
growth skin; And Lof't is a function that defines how a feather is
lofted, from root to tip, over the bird’s skin.

Then, using the attributes on the follicles, feathers are initially
instanced using a custom Feather Create’ node in the procedural
graph. Any feather can also be interactively placed by moving its
follicle or deleted by removing its follicle. The feather count can
be further reduced via a custom Feather Prune’ node that prunes
feathers based on an artist specified percentage of overlapping area.
For each feather, its axis-aligned bounding box is projected along its
normal axis to obtain a rectangle, which is used to approximate that
feather’s area. The overlapping area of the feathers in proximity is
calculated using the overlap of its corresponding rectangles.

3 LAMINATION

The primary and secondary flight feathers are rigged and allow
the animators expressive control. The body feathers, which cover
bird’s outer body, and the covert feathers, which cover the base of
the flight feathers, are automatically layered using Lamination.
The main idea of lamination, as described in [Weber and Gornow-
icz 2009], is to avoid interpenetrations by construction. We start
with a driver surface, feather root locations, and directions of
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Figure 2: a) Initially instanced feather meshes, and b) Lami-
nated feather meshes viewed along with the driver surface.

growth. The driver surface is an extension of the bird skin to include
the volume occupied by the primary and secondary feathers. The
directions of growth define a vector field that can be decomposed
into a rotational and irrotational part. The irrotational part can be
viewed as the gradient of a scalar potential, insuring well aligned
directional vectors. The lofting function defines the height displace-
ment of the feather above driver surface, so we can loft the feather
from root to tip. The lofting function is created using a proprietary
language, which is similar to a light weight version of Lisp. The
combination of the irrotational vector field, the lofting function,
and the driver surface allows us to define implicit constraint sur-
faces. We then grow one feather within each constraint surface,
insuring the length and width of the feather is preserved. One of
the features of the implicit constraint surface is that the normals
do not cross within the domain, insuring intersection free feathers.
However, when the driver surface is highly concave and the loft
function values are large, this assumption no longer holds.

A novel use of the lofting function is to include additional values
such as such as lift, wind, and noise. For example we have set up
controls for the animator to easily fluff the breast feathers. We paint
a scalar map on the driver skin to define areas for fluffing, and the
animators key-frames a scalar fluff multiplier value over time. The
product is fed into into the lofting function. We also have a Feather
Collide’ node which computes distances between the driver and
collision meshes, and is used to limit the final lofting values.

Grooming is often done in an iterative feedback loop workflow,
where feathers are groomed, laminated, and then saved to disk. In
the next grooming session, instead of generating new feathers via
the Feather Create’ node, the previously laminated feathers can be
used for the initial feather placement and orientation.

4 ART-DIRECTED MOTION

For art-directed feather motion in a shot, a custom Feather Rotation’
node is then used to rotate each laminated feather surface geometry
locally about its axes pivoting at its root, either rigidly or with a
bend. Rotation into the skin is restricted. Rotation attributes can be
set for each feather by processes described below.

4.1 Wind

3-D procedural noise fields such as Perlin noise or Wavelet noise
[Lagae et al. 2010] are used to drive the rotation values of the
feathers. Two levels of noise fields, low and high frequencies, are
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applied to produce global wind and per-feather variation. Feathers
are rotated slightly outwards away from the skin first to allow space
for the new orientations. The noise amplitude is restrained to lie
within that space to minimize interpenetrations.

4.2 Secondary Motion

Performing a full feather mesh physical simulation for secondary
motion can be prohibitive. In our system, in a shot, the root points
of the feathers are tracked per frame. To create secondary motion,
a custom physical spring simulation is run on those points with the
animated roots being the goal and with the spring lengths set to
zero. For each feather, the difference vector between its simulated
root point position and its original root point position is projected
onto its local axes to determine its local rotation. The relative neigh-
boring similarities of the simulation minimizes interpenetrations.
The interpenetrations that can happen in fast moving areas, such as
wings, are not noticeble due to speed and motion blur. The few in-
terpenetrations that can occur elsewhere may need minor cleanup
work. This simulation is cost effective in speed and memory.

4.3 Finaling and Special Effects

Special effects such as ruffling and puffing can be controlled by
setting appropriate rotation attributes. A Feather Mod’ node was
also built to specify the rotation attributes with a falloff from a
point for manipulating feathers. The user can also directly modify
the feather mesh vertices, if needed, to manipulate the feathers.

5 IMPLEMENTATION

The entire system is implemented in a node based procedural third
party package. The grooming is interactive in real-time and the
feather meshes can be visualized in motion in the 3-D viewer. The
lamination process in a shot is frame independent and can be run
in parallel across frames. The original feather lamination process
was written as a set of libraries, command line executables, and
integrated into our proprietary rigging system. Two years ago
we ported the lamination process to a third party package. This
consolidated the character effects artist’s work into a single package,
enabling the creation of the Hummingbird system.

6 CONCLUSION AND RESULTS

The Hummingbird feather system was used successfully in produc-
tions at DreamWorks for grooming feathers on twenty plus birds,
with up to 25,000 feathers per bird. It was also used for grooming
the scales on the dragon CloudJumper. For the approximately 25%
of the shots that are hero shots the character effects artists would
add in art directed motion. The remaining 75% of the shots were
automatically laminated in batch.
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