
Hierarchy Models: Building Blocks for Procedural Rigging
Michael

Hutchinson
m.s.hutchinson@

gmail.com

Sandy Kao
DreamWorks
Animation
sandy.kao@

dreamworks.com

Kevin Ochs
DreamWorks
Animation
kevin.ochs@

dreamworks.com

Gilbert Davoud
gdavoud@gmail.com

Alex Powell
alexander.powell@

gmail.com

Figure 1: Hiccup and Astrid from How to Train Your Dragon 2 using Hierachy Models

ABSTRACT
Hierarchy Models provide an encapsulation mechanism for joint
hierarchies that yield an essential building block for procedural
rigging. With Hierarchy Models, joints travel through dependency
graphs (DGs) as an atomic entity. Operation nodes in the DG can
modify all aspects of input hierarchy and even perform topolog-
ical modifications like adding or removing joints. The Hierarchy
Model reduces complexity in character rigs, improves separation be-
tween data and behavior, provides a clean interface, and simplifies
understanding and debugging rigs. It offers geometric evaluation
optimizations, and promotes parallelism in the DG structure.

KEYWORDS
Character Rigging, Procedural Rigging, Dependency Graph Opti-
mization

ACM Reference Format:
Michael Hutchinson, Sandy Kao, Kevin Ochs, Gilbert Davoud, and Alex
Powell. 2019. Hierarchy Models: Building Blocks for Procedural Rigging.
In Proceedings of SIGGRAPH ’19 Talks. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3306307.3328160

© 2019 DreamWorks Animation, L.L.C. Originally published in Siggraph 2019 Talks.
https://doi.org/10.1145/3306307.3328160

1 INTRODUCTION
In typical Digital Content Creation tools (DCCs), joints are repre-
sented as named, first-class entities that are organized into hier-
archies with directed acyclic graphs (DAGs). Each joint has one
set of values representing a single state. Complex behaviors are
defined by layering transforms, adding constraints, and driving
values through dependency graph nodes.

This works well for simple cases, but can become unwieldy as
complexity increases. In production rigs it is not uncommon to see
joints nested below a dozen intermediate transforms, each with
a specific but esoteric purpose. Joints may be duplicated across
multiple hierarchies, reverse hierarchies, or broken hierarchies,
all tied together with complex constraints and connections. State
and execution order become increasingly difficult to design, debug,
and understand as execution weaves in and out of the DAG and
dependency graph.

As the industry shifts towards greater levels of procedural-based
solutions ([Nieto et al. 2018]), joint hierarchies are not able to take
advantage of mass manipulation operations that we see in geometry.
The Houdini procedural effects and modeling is a paradigm that
has not been applied to joints and motion systems natively in a
package, except at DreamWorks. The hierarchy model represents
a solution that can be more in-lined with operations to geometry
and use the same approach and methodology. It could also take
advantage of SIMD graphics cards harware which exploits data
level parallelism.

https://doi.org/10.1145/3306307.3328160
https://doi.org/10.1145/3306307.3328160

SIGGRAPH ’19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA Hutchinson, Kao, Ochs, Davoud, Powell

2 PROCEDURAL BUILDING BLOCKS
Rather than joints being represented by individual first-class objects,
joints are components of theHierarchyModel, much like a vertex on
a poly model. Besides the base level transformation data, each joint
component have additional attributes, including, but not limited
to, parent, rotation order, scale propagation, flipping behavior, and
color. The hierarchy can then flow through the dependency graph
just like a geometric model with the output of each of these nodes
representing a distinct state of the hierarchy that can be viewed
and inspected independently.

Like geometric models, the Hierarchy Model can be modified
procedurally in many different ways. Topological modifications
can be made to add, remove, or re-parent joints. Or, more com-
monly, joints can be translated, rotated, or scaled, or have their
transforms set directly. Constraints can be written that modify one
or more joints in complex ways all represented by a single node
with minimal inputs and outputs.

3 USAGE
As an example, consider the construction of a simple limb rig with
the following behavior: independent IK and FK chains with a blend
in local-space, and an additional layer of FK offsets on top for subtle
secondary motion.

Using first-class joints, each of these states must be represented
using duplicated (but slightly different) explicit hierarchies. Local
space blends and FK offsets are difficult to set up, and rely on joint
properties like rotation order staying in sync between the different
versions of the hierarchies. The DAG and dependency graph become
difficult to trace and lack meaningful semantic clues about intended
behavior. (Figure 2)

However, using Hierarchy Models, the dependency graph simply
looks like a flowchart used to explain the desired behavior (Figure
3). The construction of the graph flows naturally from an intuitive
understanding of the desired behavior, and provides good semantic
insights into intended behavior when later debugging or modifying.

Figure 2: Typical DAG based joints in fk and ik setup

Figure 3: Hierarchy Model joints in fk and ik setup

Another example is the reverse hierarchy. In the typical con-
struction, a literal reverse hierarchy would be constructed to blend

to the normal hierarchy. This usually requires 1-to-1 mapping of
duplicated math nodes to process the transformation and a series
of constraints to accomplish the behavior as well as ensuring at-
tributes of the hierarchy such as joint rotation order are matched
and do not get out of sync.

With the Hierarchy Model, we have an operation type that can
specify an arbitrary joint as pivot. This can then modify all the
joints within the hierarchy, including itself. Transient propagation
state can also be set along the hierarchy per operation. For instance,
you could make a chain of joints curl or spin in place based on the
propagation attributes.

A benefit of Hierarchy Models is the ability to scale. When joints
are treated as individual nodes, a computationally expensive op-
eration, such as a constraining joints to a surface, will rely on the
efficiency of theDG to parallelize the evaluation. ButwithHierarchy
Models, since the joints are essentially points, they can be deformed
by geometry like any other geometry. All of the optimization of
the deformation, can take advantage of any parallel-processing
available in the deformation libraries.

Figure 4: Hier Models flowing through character sections

The encapsulation of Hierarchy Models allows for the simplifi-
cation of the character graph. Figure 4 shows an example of how a
character’s dependencies can be represented. Downstream systems
can point to a single output Hierarchy Model instead of a list of
joints. It also illustrates how the user can replace the input joint
data quickly with one model. The separation of input data to the
character motion systems allows the interface with other data types
with less rewiring of the graph. For instance, crowd data can control
the entire character using FBX motion capture and the arm can be
intercepted to use Hierarchy Models by changing one connection.

4 CONCLUSION
The DreamWorks Hierarchy Model provides a solution for joint
data that is self-contained and can be optimized using known ge-
ometry techniques. It allows the users to make complex motion
systems with less operations and makes the flow of operations more
sequential in a motion system. The resulting graph of Hierarchy
Model operations represents the logic of the system as bundled steps
instead of individual operations per transform. The data model can
be expanded on through promising new interchange formats like
USD.

REFERENCES
Jesus Nieto, Charlie Banks, and Ryan Chan. 2018. Abstracting rigging concepts for a

future proof framework design. In ACM DIGIPRO 2018. ACM. DOI:http://dx.doi.
org/10.1145/3233085.3233088

http://dx.doi.org/10.1145/3233085.3233088
http://dx.doi.org/10.1145/3233085.3233088

	Abstract
	1 Introduction
	2 PROCEDURAL BUILDING BLOCKS
	3 USAGE
	4 Conclusion
	References

