
Distributed Multi-Context Interactive Rendering
Alex Gerveshi

DreamWorks Animation
Sean Looper

DreamWorks Animation

Figure 1: Six shots from How To Train Your Dragon: The Hidden World rendered simultaneously in the cloud

ABSTRACT
By enabling artists to work interactively with renders of multiple
shots from a single application, new lighting and surfacing work-
flows were made possible. This technique was implemented by
replacing Katana’s interactive-render mechanism, and by leverag-
ing Arras, DreamWorks’ in-house cloud computation system.

CCS CONCEPTS
• Computing methodologies → Rendering; • Computer sys-
tems organization → Cloud computing;

KEYWORDS
multi-shot, multi-context, interactive rendering, cloud computing
ACM Reference Format:
Alex Gerveshi and Sean Looper. 2019. Distributed Multi-Context Interactive
Rendering. In Proceedings of SIGGRAPH 2019. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/8888888.7777777

1 INTRODUCTION
Interactive rendering is where user-applied modifications to a scene
(such as moving a camera, increasing the intensity of a light, or
changing amaterial property) are sent to the renderer and processed
without incurring the cost of a full scene rebuild. This allows artists
to iterate on their scene at interactive framerates.

When a lighting artist is working on a shot and makes a change
to a sequence-level lighting rig, they will often want to see how
the change affects the other shots in the sequence. For longer shots,
the artist will also want to see how changes made in one frame
impact the others. One way to accomplish this would be to send a
© 2019 DreamWorks Animation, L.L.C. Originally published in Digipro 2019 Talks,
https://doi.org/10.1145/8888888.7777777

number of key frames to the render farm, and then view the results
some time later. If the time-to-first-pixel is short enough, they could
render the frames locally in succession. Alternatively, if the lighting
tool and renderer support it, they can change the frame and shot
during an interactive render and flip back-and-forth.

None of these solutions are ideal; the turnaround time between
making a wide-sweeping change and viewing the results of it pre-
vents rapid iteration. It would be much faster to have each shot or
key frame running as an interactive render within the same appli-
cation, and then see a single change to the scene be propagated to
each render.

There are two main challenges to achieving this. First is the
limits of the artist’s machine; if rendered locally, each shot would be
competing for memory and CPU resources. This would reduce the
possible complexity of the scene and slow down the interactivity of
the renders as each renderer instance competes for CPU cores. For
multi-shot workflows to scale, all expensivework needs to bemoved
off of the local machine. The second obstacle is making the user
application capable of handling multiple active interactive renders;
the value of multi-shot renders is greatly reduced if sequence-level
changes cannot be applied simultaneously.

1.1 Multi-Context

Figure 2: Multi-context rendering of Poppy from Trollswith
different lighting setups

https://doi.org/10.1145/8888888.7777777
https://doi.org/10.1145/8888888.7777777

SIGGRAPH 2019, 28 July - 1 August 2019, Los Angeles, CA A. Gerveshi, S. Looper

In addition to working on different shots or frames, there are also
use cases for working on variations of the same scene such as trying
out different lighting setups or material networks. At DreamWorks,
the term "multi-context" encompasses these workflows as well as
multi-shot.

2 ARRAS
Arras is a cloud-based computation system developed at Dream-
Works. An Arras computation receives messages, performs work
based on their contents, and then sends outgoing messages. A group
of computation instances passing messages between each other is
referred to as a session.

MoonRay, DreamWorks’ renderer [Lee et al. 2017], is designed
to be Arras-aware. If an Arras session contains multiple render
computations (with each computation running on a separate Arras
machine), then the MoonRay instance in each computation will
render different parts of the frame, with the results being merged
together before they are returned to the client application. The
time-to-first-pixel is roughly the same as for a local render, as each
computation must build the entire scene. However, the time in
which the render converges decreases linearly with the number
of render computations in use; using 10 render computations will
result in the render completing 10 times faster than using a single
computation.

If the entire process of loading, building, and rendering a scene
can be offloaded to Arras, then in a multi-context scenario the client
application would only responsible for managing the Arras sessions
and receiving the rendered frames.

3 KATANA
When a render is started from the Katana node graph, an optree
is generated. The optree describes a sequence of operations that
when evaluated will generate the scene graph. All loading of data
is deferred: no scene data is loaded until the scene graph is ex-
panded by Geolib3, Katana’s scene graph processing engine. For
a multi-context setup, this means that an optree for each context
can be constructed in a single Katana session without having to
load the scene data (such as a USD stage) for each shot. An Arras
computation was developed that receives a message containing the
optree, evaluates the scene graph using Geolib3, and then starts a
MoonRay render.

The "ContextSwitch" Katana node was created to allow users
to define multiple contexts, where each input to the node is a new
context. This gives the user the flexibility to have separate node
graphs feeding into each context, or using a single node graph that
branches off to allow for context-specific variations. When the user
starts a render from this node, the initial optree is generated for
each context and an Arras session is started. The resulting rendered
frame data is then copied to different sections of the Katana monitor
based on a user-described layout.

The interactive render mechanism shipped with Katana requires
the user to select the scene graph locations that they want to moni-
tor for updates. As they make changes to the node graph, the optree
is updated and the selected locations are re-evaluated by Geolib3.
Updated location data is then streamed to the renderer. This mecha-
nism has the following drawbacks: a) it is only capable of handling

a single context, b) it requires the data for each scene to be loaded
on the local machine, and is therefore unsuitable for multi-context
interactive rendering, c) monitoring multiple scenes for updates
would be computationally prohibitive.

Instead, a new system was developed that regenerates the op-
tree for each context when the user makes a change in the node
graph. This is a lightweight operation as Katana caches the ops
associated with each node. The latest optree for a context is com-
pared with the previous, and the difference between the two, the
optree delta, is sent to the corresponding Arras session. There, the
entire scene graph is being monitored for changes and the render is
updated. This allows for each context to have different scene graph
layouts and not have to rely on the user to specify what scene graph
locations they are interested in monitoring.

With this method the local application is only responsible for
generating optree deltas and receiving rendered frame data from
Arras. All of the heavy lifting has been offloaded to the cloud. The
user is only limited by the amount of cloud resources available to
them. Each context can fully utilize the memory and CPU of the
cloud machines assigned to the Arras session, rather than having
to compete for resources on the local machine.

This technique is not limited to Katana, in theory any application
that can construct an optree and connect to Arras now has access
to multi-context rendering.

4 CONCLUSIONS
One of the main use-cases for multi-context at DreamWorks has
been in interactive reviews with creative supervisors. Previously,
when given notes on a sequence, the artists would then have to
make the changes once the session was over, submit the updated
shots to the farm, and then repeat the process at a future review.
Now, using amulti-shot Arras setup, artists canmake changes in the
lighting tool with the director still in the room. These changes are
not limited to lighting; changes to animation, geometry, materials,
or any other part of the scene can be made while maintaining
interactive frame rates. This scenario is even more compelling
when each Arras session is using multiple render computations.
For example, the artist driving the session can start a render with
six contexts where the Arras session for each context requests four
48-core machines. To the users it then appears they have started six
192-core interactive renders from a single application. By reducing
the necessity of offline rendering, the decision to "final" a shot can
now be a purely creative one, rather than being subject to the time
constraints of previous workflows.

ACKNOWLEDGMENTS
The authors would like to thank Stefan Habel and Jordan Thistle-
wood at Foundry, and Toshi Kato, RobWilson and the lighting tools
team at DreamWorks.

REFERENCES
Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. 2017. Vectorized Production Path

Tracing. In Proceedings of High Performance Graphics (HPG ’17). ACM, New York,
NY, USA, Article 10, 11 pages. DOI:http://dx.doi.org/10.1145/3105762.3105768

http://dx.doi.org/10.1145/3105762.3105768

	Abstract
	1 Introduction
	1.1 Multi-Context

	2 Arras
	3 Katana
	4 Conclusions
	Acknowledgments
	References

