
A Dynamically-Updating Hierarchical Stopping Condition for
Monte Carlo Illumination

Keith Jeffery
DreamWorks Animation

keith.jeffery@dreamworks.com

ABSTRACT
An image-space hierarchy is introduced to reduce artifacts from
prematurely stopping in adaptive sampling in a Monte Carlo ray
tracing context, while maintaining good performance and fitting
into an existing sampling architecture.

CCS CONCEPTS
• Computing methodologies → Rendering; Ray tracing;

KEYWORDS
ray tracing, mcrt, global illumination

ACM Reference Format:
Keith Jeffery. 2019. A Dynamically-Updating Hierarchical Stopping Condi-
tion for Monte Carlo Illumination. In Proceedings of ACM SIGGRAPH. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/8888888.7777777

1 INTRODUCTION
The adaptive sampling framework of Dammertz et al. [2010] is ex-
panded to account for low-probability visual effects while both
fitting into the existing sampling framework for DreamWorks’
MoonRay Monte Carlo renderer and fulfilling MoonRay’s goal:
Keep all lanes of all cores of all machines busy all the time with
meaningful work.

Dammertz et al. [2010] offers an adaptive sampling framework, in
which the authors specify both an error calculation and an implicit,
dynamically-created hierarchy of sampling regions that gets refined
as samples are added to the render buffer. These regions are added
to a queue which specifies which pixels need further refinement.

The previous generation of adaptive sampling in MoonRay was
influenced by the error calculation in Dammertz et al. [2010], but
their hierarchy was discarded in favor of eliminating thread con-
tention. The new adaptive sampling framework extends their work
to not only fit into MoonRay’s rendering framework efficiently,
but to allow the hierarchy to respond to newly discovered scene
information.

2 A FRAMEWORK FOR PREDEFINED TILES
MoonRay, a unidirectional path tracer, creates its primary rays
for rendering through tiles of 8 by 8 pixels over the image plane.
Each tile is rendered by a single thread, keeping thread contention

© 2019 DreamWorks Animation, L.L.C. Originally published in Siggraph 2019 Talks.
https://doi.org/10.1145/8888888.7777777

Figure 1: Left: Previous adaptive samplingwith box artifacts.
Right: New adaptive sampling.

to a minimum. While MoonRay queues and sorts many of the
secondary rays, there is neither queuing nor sorting of the primary
rays. As such, maintaining this tiling architecture is important for
primary cache coherency. In order to maintain the tiling framework,
instead of adding regions to a render queue, an explicit binary tree
is maintained where the root node represents the total area of the
final image (as the initial region of the Dammertz et al. does). As a
region is split, two nodes are added as children. Instead of removing
completed nodes, as in Dammertz et al., internal and leaf nodes can
be marked as complete in the tree.

During rendering, tile scheduling is performed as usual, but each
tile is checked against the binary tree. If it is completely within a
completed region, the tile is skipped. If it overlaps any region that
is not complete, the intersection of the tile and the tree partition is
rendered as normal. The intersection is cheap to compute, and it
reduces the number of pixels rendered as the image converges.

3 ADAPTING TO NEW INFORMATION
The previous version of MoonRay’s adaptive sampling eschewed
the hierarchy of Dammertz et al. [2010] in order to minimize thread
contention, having each tile check only against the error in its
region. This, however, led to artifacts under some circumstances:
a tile could prematurely conclude that it had converged while it
may be that low-probability effects, such as caustics, had not yet
been discovered. This loss of information is visually jarring as the
artifacts result in tiles that do not match the features of their neigh-
bors as opposed to additional noise (see Figure 1). It was assumed
that the hierarchical method of Dammertz et al. could reduce these
artifacts with more global information. However, in implementing
the tree as described above, the artifacts, while slightly different in
nature, persisted.

This leads to conflicting desires: early stopping and the adaption
to newly-discovered image features. If the tree can adapt to new
information found in neighboring tiles, previously completed tiles
can be revisited. The work of Dammertz et al. already accounts for
error varying over an image by non-uniformly splitting the image
regions such that the error is nearly equally divided between the
newly-formed halves. However, by queuing and discarding regions,

https://doi.org/10.1145/8888888.7777777
https://doi.org/10.1145/8888888.7777777

ACM SIGGRAPH, August 2019, Los Angeles, California Keith Jeffery

this division is never revisited. In order to adapt to new error, the
algorithm presented here rebuilds the entire tree each pass through
the image plane. If the error increases in a node from a newly-
found feature (e.g. aliased geometry, caustics, or fireflies), the node
is implicitly re-split (through rebuilding the tree), giving less area
to the node with increased error and giving the neighboring node
more opportunity to revisit those pixels.

3.1 Floating-point image-space division
It is natural to split the image plane on integer boundaries, as
is done in [Dammertz et al. 2010]. However, in the desire to re-
balance the tree, this does not often work advantageously: the
image-space split location is a step function that can require a
significant change in error to move, meaning newly found data
may not affect the integer boundaries of the tree. With that in mind,
and not being constrained to queues of image regions, the tree
splitting was modified to work on floating-point values, making the
split location much more sensitive to changes in calculated error
(and more balanced). The pixel boundaries that mark the rendering
region are rounded in such a way as to increase the bounds to the
nearest integer.

3.2 Sample consistency
As pixels may be interrupted in their sampling, a buffer is used to
keep count of the primary samples for each pixel. As rendering
progresses, the samples are generated using this value instead of
an overall sample count for the image, allowing each pixel to retain
its sampling distribution.

4 THREADING
The largest challenge with this adaptive sampling technique is
thread contention. As each tile is independent, but the tree is global,
care must be taken in reading and updating the tree. This section
details efforts in minimizing thread-contention during rendering.

4.1 Barrier-free tree updates
MoonRay progressively renders by adding samples to the tiles
discussed in Section 2. The tree is updated every pass over the image
plane, where the number of samples per pass increases as rendering
progresses. Updating the tree on every pass makes it tempting to
use a thread-barrier to update when the pass is complete. This,
however, would leave a segment of time where threads are idle and
tiles are not being updated.

By default, MoonRay renders tiles in an order defined by a Mor-
ton curve, which helps provide cache coherency for primary rays. In
general, following a Morton curve, quadrants of an image are com-
pleted (with some overlap) in sequence. This is taken advantage of
by using four trees, one for each quadrant of the image. To minimize
locking, the tree is updated on a “last one out turn off the lights”
basis, allowing one thread to perform an update while others con-
tinue to render in other quadrants. For error calculation, quadrants
overlap each other by the size of a tile, eliminating artifacts at the
seams. As the tiles are checked exclusively to the non-overlapping
quadrant trees, this adds inconsequential computation time.

An atomic counter is kept for each quadrant, initially set to
the number of tiles. Each tile, upon being visited, decrements this

atomic counter. When the counter reaches zero, the active thread
locks the tree and performs the update. For efficiency, there is
no synchronization between the atomic variable and the lock for
updates. Once the lock is taken, the atomic variable must be read
again and incremented in such a way as to account for threads
having possibly modified the atomic variable again. However, the
update of this atomic variable can be made slightly more efficient
because the memory fences on the atomic read and write at this
point do not have to be ordered, as the secured lock will ensure
proper ordering.

4.2 Reader-writer locks
In order to check a tile against the tree, a lock must be taken.
However, in a film resolution image, a quadrant is read nearly
6,500 times more than it is updated. Therefore, reader and writer
locks are used: shared reader locks for the common case of checking
a tile, and a writer lock for the updating, which is only used once
all of the threads are done rendering in that region.

4.3 Reducing mutex contention
Ideally, shared reader locks would offer no contention when locked
by multiple threads. In practice, this is rarely the case. In order to
further minimize thread contention, an array of shared mutexes is
used, and accessed in such a way that no neighbors in 2D space
access the same mutex. A lock is accessed as y(p/2+1)+x , where x
and y are the 2D grid coordinates and p is the power-of-two length
of the array. Dividing by two means each row accesses the array
offset as much as possible, adding one to make it odd, ensuring that
it is co-prime with the power-of-two size. Each mutex is cache-line
aligned to eliminate false sharing.

5 PERFORMANCE
Rebuilding the tree from scratch each pass takes a single thread less
than 20ms per quadrant. While the algorithm for checking a tile for
completeness compromises no discernible time, the wait time for
the locks required for checking if a tile is complete comprises 0.376%
of the render time on a moderately complex production scene. Even
though they require exclusive access, the locks for updating the
tree show no discernible wait time due to the atomic counter and
the quadrant partitioning.

6 CONCLUSIONS
The new framework for adaptive sampling performs much better on
the worst-case scenarios, while improving under-sampling issues
in production scenes.

REFERENCES
Holger Dammertz, Johannes Hanika, Alexander Keller, and Hendrik Lensch. 2010. A

Hierarchical Automatic Stopping Condition for Monte Carlo Global Illumination.
In Proc. of the WSCG 2010. 159–164.

	Abstract
	1 Introduction
	2 A Framework for Predefined Tiles
	3 Adapting to New Information
	3.1 Floating-point image-space division
	3.2 Sample consistency

	4 Threading
	4.1 Barrier-free tree updates
	4.2 Reader-writer locks
	4.3 Reducing mutex contention

	5 Performance
	6 Conclusions
	References

