
LibEE 2 - Rich Authoring and Fast Evaluation
Stuart Bryson
DreamWorks

stuart.bryson@dreamworks.com

Esteban Papp∗
DreamWorks

esteban.papp@gmail.com

Figure 1: Premo (Property of DreamWorks)

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; Animation;

KEYWORDS
directed acyclic graph, dependency graph, evaluation, authoring,
animation, rigging

∗Now at Amazon.

© DreamWorks Animation, L.L.C. 2018. This is the author's version of the work. It is 
posted here for your personal use. Not for redistribution. The definitive version was 
published in Digital Production Symposium 2018,
http://doi.org/10.1145/3233085.3233089.

ACM Reference Format:
Stuart Bryson and Esteban Papp. 2018. LibEE 2 - Rich Authoring and Fast
Evaluation. In Proceedings of SIGGRAPH. ACM, New York, NY, USA, 2 pages.

1 INTRODUCTION
The Premo animation platform [Gong et al. 2014] developed by
DreamWorks utilized LibEE v1 [Watt et al. 2012] for high perfor-
mance graph evaluation. The animator experience required fast
evaluation, but did not require fast authoring or editing of the graph.
LibEE v1, therefore, was never designed to support efficient edits.
This talk presents an overview of how we developed LibEE v2 to
enable fast authoring of character rigs while still maintaining or
improving upon the speed of evaluation. Overall, LibEEv2 achieves
a 100x speedup of authoring operations compared with LibEE v1.



SIGGRAPH, 12 - 16 August, 2018, Vancouver Bryson and Papp

2 PREVIOUS AUTHORING APPROACH
Previously, character rigs were authored in a proprietary tool called
Rig. These rigs were translated offline into a LibEE v1 graph. This
graphwas then loaded into Premo and evaluated. Since most editing
operations were not supported in Premo, if a change to the rig was
required, the process must repeat. Only minor graph editing opera-
tions were allowed within Premo, such as loading and unloading
assets or editing of constraints. Therefore, during development of
LibEE v1, evaluation performance was our priority, not authoring.

LibEE v1's performancewas not obtained fromwalking the graph
topology itself, but through a series of caches and lookups that were
built during the first evaluation. For example, one cache tracked
the relationship between animator controls and output geometry.
When the graph structure changed, LibEE v1 needed to rebuild
these caches.

Since the set of inputs and outputs for an animation rig is fairly
static, and editing the graph in an animation session was fairly
limited, LibEE v1 was sufficient. Character riggers, however, do
not have a static set of inputs or outputs. They are constantly
modifying and inspecting the results at arbitrary points in the
graph. LibEE v1 was not sufficient for rigging workflows. LibEE
needed improvement to support editing without compromising
evaluation performance.

The LibEE v1 caches that enabled the fast evaluation did not
scale for typical Character Rigging workflows. Caches only stored
lookups from animation controls to output geometry. Character
Rigging workflows have orders of magnitude more inputs and
outputs that are not required for animation workflows. Caching this
amount of data was prohibitively expensive and took significantly
longer to rebuild.

Another limitation was the translated graph did not match the
original authored semantics. Features such as subgraphs and refer-
ences were all flattened during translation from Rig. LibEE v1 did
not have the ability to represent these capabilities.

3 LIBEE V2 AUTHORING APPROACH
LibEE v2 takes a different approach. While many concepts were
borrowed from the original implementation, it is an entire rewrite.
LibEE v2 creates a dual representation of the graph: one for au-
thoring, and one for evaluation. The authoring representation has
Nodes, Attributes, and Connections, while the evaluation repre-
sentation has Tasks and Dependencies. As the Character Rigger
makes an edit to the authoring representation, we simultaneously
update the evaluation representation. This allows us to support a
rich authoring language while maintaining fast evaluation.

During the update to the evaluation representation, we can apply
various optimizations. Firstly we remove duplicate task dependen-
cies, we create shortcuts that bypass connections between two
inputs, and also create inlined task functions that remove the need
for an extra node to convert between types.

LibEE v1 was slow at performing graph walking operations used
in dirty propagation and planning. It did these in serial and relied
on caches to reduce the need for walking operations. In LibEE v2,
however, the evaluation representation reduces the number of steps
required to perform a walk, and also performs them in parallel.

LibEE v2 adds a shared memory pool. This memory pool de-
creases memory consumption by allowing values to be reused
rather than duplicated. It supports multidimensional data caching,
allowing inputs and outputs to be cached across frames.

4 RESULTS
LibEE v2 edits the graph faster, evaluates subsequent results faster,
improves performance and reduces memory consumption as com-
pared to LibEE v1. When adding a node that has no connections,
LibEE v1 would take 239ms to edit the graph and 170ms for a subse-
quent evaluation. This is compared with 1ms and 7ms respectively
for LibEE v2. When setting a value that is not an animator input,
LibEE v1 would take 168ms to edit the graph and 143ms for a sub-
sequent evaluation. LibEE v2 would take less than 1ms and 6ms
respectively (See figure 2). When changing which outputs we were
evaluating, LibEE v1 would take 184ms compared with 11ms with
LibEE v2. Lastly, a typical character in LibEE v1 used 1.464 GB
compared with 1.126 GB in LibEE v2.

All these improvements were achieved while maintaining and
often improving the speed of evaluation. For example, on one of
our production characters we went from 15fps in LibEE v1 to 24fps
in LibEE v2 while posing the main body control.

Figure 2: Setting a value that is not an animator input

REFERENCES
Matthew Gong, Fredrik Nilsson, Alex Powell, Jason Reisig, Alex Wells, Stuart Bryson,

Esteban Papp, and Paul DiLorenzo. 2014. Premo: A Natural-Interaction Animation
Platform. In ACM SIGGRAPH 2014 Talks. ACM, 3.

Martin Watt, Lawrence D. Cutler, Alex Powell, Brendan Duncan, Michael Hutchinson,
and Kevin Ochs. 2012. LibEE: A Multithreaded Dependency Graph for Character
Animation. In Proceedings of the Digital Production Symposium (DigiPro ’12). ACM,
New York, NY, USA, 59–66. DOI:http://dx.doi.org/10.1145/2370919.2370930

http://dx.doi.org/10.1145/2370919.2370930

	1 Introduction
	2 Previous Authoring Approach
	3 LibEE v2 Authoring Approach
	4 Results
	References



