
Firefly Detection with Half Buffers
Keith Jeffery
DreamWorks

keith.jeffery@dreamworks.com

ABSTRACT
Fireflies, bright pixels seemingly out of place compared to neighbor-
ing pixels, are a common artifact in Monte Carlo ray traced images.
They arise from low-probability events, and would be resolved
in the limit as more samples are taken. However, these statisti-
cal anomalies are often so far out of the expected range that the
time for them to converge, even barring numerical instabilities, is
prohibitive. Aside from the general problem of fireflies marring
a rendered image, their difference in color and variance values
can cause problems for denoising solutions. For example, the dis-
tance calculation for non-local means filtering [Buades et al. 2005]
presented in Rousselle et al. [2012] is not robust under extreme
differences in variance.

This paper addresses removing these fireflies to improve both
the rendered image on its own, and making the available data more
uniform for denoising solutions. This paper assumes a denoising
framework that makes use of half buffers and pixel variance, such as
set forth in Rousselle et al. [2012]. The variance provides better data
than the color channels for determining which pixels do contain
fireflies, whereas the half-buffers provide some assurance that the
detected firefly is not an expected highlight in the rendered image.
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1 PREVIOUS WORK
Mara et al. [2017] address firefly removal in the context of their
denoising algorithm, but not as a stand-alone pass. They use a
median filter over the image to remove extreme values from the
pixel data.

2 INTRODUCTION
Several denoising algorithms make use of half buffers [Bitterli et al.
2016; Rousselle et al. 2012], where the image samples are divided
between two buffers, and the variance of the samples for each pixel
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is saved. The half buffers provide similar images, differing mostly
in noise, the mean of which provide the same image that would
have resulted in storing all of the samples in a single image. The
algorithm set forth in this paper will utilize these two half buffers
to detect fireflies.

3 FIREFLY DETECTION

⟨I ⟩ ≈ 1
N

N∑
i=1

f (x̄i )
p(x̄i )

(1)

Equation 1 is the importance-sampling Monte Carlo estimator
of the integral I =

∫
Ω
f (x̄)dx̄ given N samples and a probability

density function, p(x̄) from which to draw the samples. As an exam-
ple of the origin of fireflies, if the ratio between the function value
and the probability of sampling that value is large, the estimate of
I can be large when not fully converged. Ideally, when the value
of f (x̄) is large, the value of p(x̄) is also large. Issues arise when
a low-probability event occurs. These events cause large radiance
values, but also increase the variance.

Because of the increased variance, the variance data provide a
better source of outlier data than the color channels; some pixels
may be much brighter than others in the image, but they may
represent an expected and fully-converged highlight.

3.1 Detecting the Fireflies
Fireflies are detected by searching for outliers in the variance data
using the Generalized ESD Test for Outliers [Rosner 1983]. Unlike
other outlier tests, this test does not require knowing the exact
number of outliers beforehand, but does require an upper bound,
the estimation of which is detailed in Section 3.2.

3.2 Estimating the Upper Bound
Providing an upper bound that is the same as the number of pixels
is prohibitively slow, so estimating a tighter upper bound is worth-
while. To estimate the upper bound, the modified Z-score is used
[Iglewicz and Hoaglin 1993]. Assuming that the image may not be
the final beauty render, black pixels are ignored when estimating
the upper bound (the alpha channel can also be used to further rule
out pixels). Also, the bound is much tighter if the square root is
taken to convert the variance to the standard deviation. This upper
bound is then supplied to the Generalized ESD Test for Outliers.

4 FIREFLY REMOVAL AND
RECONSTRUCTION

The basic algorithm for reconstruction is straightforward: for every
pixel that is an outlier, reconstruct its color value by applying a filter
kernel to its neighboring pixels, excluding any neighboring outliers.
In testing a box filter, a truncated Gaussian filter, and a Lanczos
sinc filter, a Gaussian filter five pixels wide gave the most accurate
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Initial 2 2 x x 8 8
Filtered 2 2 2 2 8 8

Table 1: An example of directional filtering, where x signi-
fies outlier data. A directional filter will bias the result by
propagating information in one direction only.

image reconstruction [Smith 1995]. Variance is also updated in this
manner for information in a later denoising pass.

Ignoring neighboring outliers can lead to problems with consis-
tency and computability: in the worst case, every neighboring pixel
within the kernel footprint is also an outlier, providing no valid data
from which to reconstruct the pixel. This happens in wide specular
highlights, see the accompanying figure. Making the assumption
that the pixels on the edge are valid, the computability problem
can be overcome by reconstructing the pixels directionally, e.g.
left-to-right: pixels from at least one edge will have already been
reconstructed, providing necessary data. However, this can still
lead to consistency problems, as the directional pass will propagate
values in one direction only. See Table 1.

To address these issues, the reconstruction is done in two phases:
the first phase keeps a list of uninitialized outlier pixels and will
iterate until they have all been given an initial value. The second
phase will iterate over the outlier pixels until a desired amount of
convergence is met without having to worry about uninitialized
values.

5 HIGHLIGHTS
Even when checking the variance data, legitimate highlights can
register as fireflies. For example, the specular samples originating
from the same pixel may contribute vastly different luminance
values by hitting different portions of an environment light (see
Figure 1). Using the half buffers, it can be determined, with high
probability, if the bright pixel is a highlight or a random firefly
due to a low-probability event. Simply, if the detected outlier exists
at the same pixel location in both buffers, it can be assumed that
the pixel contains a legitimate highlight, and the bright pixels can
be added back to the image. If the firefly removal is a first step to
denoising, these pixels can be denoised through non-local means
[Buades et al. 2005] before being added back into the output color
data.

Figure 1: Specular rays from the same pixel can result in
vastly different radiance values. The high variance can lead
to incorrectly classifying highlights as fireflies.

6 ALGORITHM DETAILS
The most time-consuming part of the algorithm is the Generalized
ESD Test for Outliers. Written carefully, with n pixels and withm
as the upper bound on the number of outliers, the algorithm can
be written in O(m logn) time. Written in this manner, the most
time-consuming part of the Generalized ESD Test is calculating
the lambda values, which requires calculating percentage points
of Student’s t-distribution, which has no closed-form solution. To
optimize this portion, results of calculating the percentage points
numerically are cached and reused for the second half buffer, and
for other frames when temporally filtering. This works because
each buffer has the same number of pixels, so the lambda values
are invariant over a run.

In the pseudocode accompanying this paper, a minmax heap is
used to implement the Generalized ESD Test as it is formulated for
two-ended outlier testing. Being interested in only the high variance
outliers, this can be simplified to using just a heap. Since no data
are being added to the heap after creation, it is also possible to use
a sorted array, with a slightly increased complexity of O(n logn)
(sincem ≤ n, and it is likely thatm ≪ n). The same function uses
an iterative shifted mean and variance calculation, which allows the
computation of the intial statistics in O(n) time, and O(1) addition
and removal of a single data point.

7 CONCLUSIONS
Testing half buffers for outliers in the variance data has improved
denoising results, and is useful in its own right, even if denoising
is not being applied to the images. With careful use of caching and
data structure choice, the operation takes less than a second on film
resolution frames with no parallelism.
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