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1. INTRODUCTION

In recent years there has been an increase in movie visual effects
based on Computational Fluid Dynamics (CFD). The most common
CFD effects are computer generated fire and smoke but high-quality
water animations have also appeared in several blockbuster movies.
At the core of these effects are typically the incompressible Navier-
Stokes equations. However, for some phenomena, like water, the
effect of viscosity is sometimes ignored and the Euler equations are
solved instead. Though many methods exists for solving the Navier-
Stokes equations [Monaghan 1988; He and Luo 1997; Zhu and Brid-
son 2005] among others, grid-based Eulerian solvers tend to be very
popular when high quality results are desired. CFD calculations in
general, and Eulerian solvers in particular are, however, very com-
putationally expensive. Consequently it is desirable to limit the vol-
ume in which the simulation takes place, that is, the simulation do-
main. Using a small domain can, however, cause its own problems.
One of these, undesired wave reflection, is the focus of this article.

© DreamWorks Animation, L.L.C. 2010. This is the author's version of the 
work. It is posted here for your personal use. Not for redistribution. The 
definitive version was published in ACM Transactions on Graphics 2010,
https://doi.org/10.1145/1857909.1857912.

Consider as an example a ship moving over a wide ocean; the ship
will generate waves as it pushes through the water and these waves
will travel outwards away from the ship. Close to the vessel we want
a realistic fluid simulation that accurately captures the physics of
this scenario: the waves breaking around the bow, for example. This
requires a fairly accurate and thus typically slow simulation method.
In order to complete the simulation within a reasonable timeframe
we need to limit our simulation domain to the close surroundings of
the ship. However, the waves generated by the ship will eventually
reach and reflect off of the simulation domain boundaries. These
reflected waves can easily return to the region of interest close to the
ship causing wave patterns (i.e., interference) that should not exist
for a lone vessel on an open ocean. An example of such a scenario
is depicted in Figure 1. Note the distinctly different behavior of the
fluid along the boundaries of the “walled in” reference simulation
(left) and the “true” open ocean simulation (right).

In physics this type of problem is often encountered for com-
pressible fluid simulations, for example, when simulating airflow
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Fig. 1. An example of the difference between a walled-in fluid simulation
(left) and an open ocean simulation (right).

around an aircraft as is done in Hein et al. [2007] and Özyörük
[2009] among many others. The typical solution is to employ non-
reflecting far-field boundaries instead of simple walls at the edge of
the simulation domain. One of the best known realizations of such
a nonreflecting boundary is the Perfectly Matched Layer (PML)
approach [Berenger 1994; Richards et al. 2004; Johnson 2007]. In
physics one often deals with a continuous compressible medium
covering the entire simulation domain: wind, weather, and acoustic
simulations, for example. However, in this article we will instead
focus on developing a PML-based, nonreflecting boundary con-
dition for visual-effects-oriented problems like the ship on open
water. This includes deriving a PML boundary formulation for the
incompressible Navier-Stokes equations as well as properly treating
the dynamic fluid surface now present. We also aim to construct a
method for solving the resulting equations that is fast and stable
enough to be useful for visual effects.

In Section 4 of this article we derive such a boundary condition by
extending the work of Hu et al. [2008] to incompressible fluids in the
presence of an external force field. In Section 5 we then describe how
to apply the resulting equations to free surface fluid animation. This
includes the steps necessary to handle the fluid surface as well as
how to properly deal with the transition from the regular simulation
domain to the reflection preventing boundary region. In Section 6
we present an algorithm for solving the relevant equations based on
the popular stable fluids approach [Stam 1999; Foster and Fedkiw
2001; Fedkiw et al. 2001; Enright et al. 2002]. Section 7 presents
two additional methods for achieving low reflection boundaries 7:
explicit and implicit dampening. In Section 8 we provide numerical
examples aimed towards measuring and validating the effectiveness
of our PML boundary using explicit and implicit dampening as
comparisons. Finally we provide concluding remarks in Section 9.

2. PREVIOUS WORK

The first perfectly mathced layer approach was introduced by
Berenger in 1994 for computational electromagnetics [Berenger
1994]. Berenger used a split-variable formulation that was later
shown to be dynamically stable but only weakly well-posed
[Abarbanel and Gottlieb 1997]. Since then it has been shown that
the PML method is equivalent to a complex change of variables in
the frequency domain and that the PML equations can be formulated
in unsplit physical variables [Chew and Weedon 1994; Turkel and
Yefet 1998; Zhao and Cangellaris 1996]. The PML method was first
applied to computational fluid dynamics and computational aeroa-
coustics starting with the linearized Euler equations in Hu [1996].
In Hu [2001b] it was later found that a necessary condition for the
PML method to work in this scenario was that all physical waves
have consistent phase and group velocities. This conclusion was
also reached independantly in Bcache et al. [2003]. In response to
this issue several new PML formulations have been developed. In

Hu [2001a] a stable PML method for the linearized Euler equations
in the precense of a uniform mean-flow was proposed. Equivalent
methods have also been presented in Bécache et al. [2004] and
Hagstrom and Nazarov [2002, 2003]. Recently the PML method
has also been applied to the nonlinear Euler [Hu 2006] and Navier-
Stokes equations [Hagstrom et al. 2005; Hu et al. 2008].

It is interesting to note that the fundamental idea of deriving
absorbing boundary conditions by means of complex scaling of
coordinates, which forms the very basis of the PML, for example,
Eq. (5), originates outside the field of computational fluid dynamics.
While it is virtually impossible to track its exact origin, this idea of
complex scaling has existed in quantum dynamics for a long time.
Specifically, it has successfully been applied to the study of atomic
and molecular dynamics in Reinhardt [1982], Neuhasuer and Baer
[1989], Museth and Leforestier [1996] among others.

In the fields of computer graphics and fluid animation, simple
open boundaries for incompressible gas and smoke simulation have
been widely used for some time. Examples include Stam [1999]
and Fedkiw et al. [2001]. Compressible gas and smoke simulation
is not widely used in computer graphics, however, PML bound-
aries concerning this problem have been well studied in the field of
computational acoustics as presented before. To the extent of our
knowledge nontrivial open boundaries for free surface incompress-
ible flow were first presented in Söderström and Museth [2009]
which constitutes preliminary results of the current article.

3. CONTRIBUTIONS

Our approach for deriving a nonreflective boundary condition for
the Navier-Stokes equations is primarily based on previous work
by Hu et al. [2008]. However, we make several novel contributions.
First of all we show how to extend PML-type boundaries to incom-
pressible fluids in the presence of a free surface. We also derive the
equations necessary to handle conservative forces, like gravity, in
the boundary domain. Furthermore we present a novel algorithm for
solving the resulting equations based on the stable fluids approach.
Though our algorithm is not unconditionally stable, we describe a
specialized time integration scheme that makes the stability con-
dition independent of the boundary, allowing for fast and stable
simulations regardless of the amount of wave dampening applied.
Finally we present a thorough analysis of the effect of the various
parameters involved in our boundary model as well as describing
how to use both explicit and implicit geometry to represent the
boundary itself.

4. DERIVING A PML BOUNDARY CONDITION
FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

In this section we will derive a formulation of the Navier-Stokes
equations that will be able to efficiently absorb any waves present in
the solution. The goal is to obtain wave dampening equations that
are matched to the behavior of the Navier-Stokes equations, thus
achieving better dampening results than simpler techniques. We will
deploy these matched equations in a boundary layer neighboring a
region where the regular Navier-Stokes equations are solved, thus
obtaining a boundary capable of preventing reflections. As we will
see, this approach results in directional dampening of the Navier-
Stokes momentum equations. We will also see that even though
we are dealing with an incompressible fluid, our approach leads
to artificial sources and sinks in the boundary regions. This pseu-
docompressible behavior allows our method to efficiently absorb
incoming waves by temporarily absorbing mass as well as energy.
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We start the derivation of our boundary condition by considering
the Navier-Stokes equations for incompressible flow, commonly
written as

∂v
∂t

+ (v · ∇)v = f
ρ

+ ν∇2v − ∇p

ρ
, (1)

∇ · v = 0, (2)

where v = (vx, vy, vz) is the fluid velocity vector field, p represents
pressure, f denotes external forces, ν is the kinematic viscosity, and
ρ is the density of the fluid. Eqs. (2) and (1) can also be written in
conservation form, resulting in the equation

∂u
∂t

+ ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
= f, (3)

where

F1 =

⎛
⎜⎝

ρvx

ρv2
x + p − τxx

ρvxvy − τyx

ρvxvz − τzx

⎞
⎟⎠ , F2 =

⎛
⎜⎝

ρvy

ρvxvy − τxy
ρv2

y + p − τyy
ρvyvz − τzy

⎞
⎟⎠ ,

F3 =

⎛
⎜⎝

ρvz

ρvxvz − τxz
ρvyvz − τyz

ρv2
z + p − τzz

⎞
⎟⎠ u =

⎛
⎜⎝

ρ
ρvx

ρvy

ρvz

⎞
⎟⎠ , f =

⎛
⎜⎝

0
fx

fy

fz

⎞
⎟⎠

and

τxx = 2ρν
∂vx

∂x1
, τyy = 2ρν

∂vy

∂x2
, τzz = 2ρν

∂vz

∂x3
,

τxy = ρν

(
∂vx

∂x2
+ ∂vy

∂x1

)
, τxz = ρν

(
∂vx

∂x3
+ ∂vz

∂x1

)
.

τyz = ρν

(
∂vy

∂x3
+ ∂vz

∂x2

)
Note that since we have assumed incompressibility we also know
that ρ(x, y, z, t) = ρ0 where ρ0 is the initial density field.

Our derivation that follows will be fairly math intensive, however,
many of the calculations will be similar for different vector compo-
nents and/or spatial directions. Thus in order to reduce the number of
equations and the size of each equation we will throughout this arti-
cle use the following index notation: The index α ∈ {0, 1, 2, 3} will
be used to enumerate vector components and the index β ∈ {1, 2, 3}
denotes spatial directions. Thus the notation qα,β will describe 12
different variables, one for each vector component and direction.
The notation xβ ≡ {x1, x2, x3} represents the three spatial variables
commonly referred to as x, y, and z. Using this notation the in-
compressible Navier-Stokes equations in conservation form can be
written as

∂uα

∂t
+

∑
β

∂Fα,β

∂xβ

= fα. (4)

Since the index α = {0, 1, 2, 3} Eq. (4) actually describes four
equations: one for each vector component. The notation Fα,β de-
notes vector component α of flux vector β, thus, for example,
F1,3 = ρvxvz − τxz. This notation is essentially equivalent to the
index notation typically used for matrices and vectors and in this
context it may be helpful to think of Fα,β as a matrix where each
flux vector constitutes one column. It is important to understand
that Eqs. (3) and (4) are equivalent since we will make heavy use
of this type of notation throughout the article.

The derivation to follow is based on the work of Hu et al. [2008],
however, we will make a novel contribution in order to handle the
presence of external forces. For the scope of this article we will also

limit ourselves to PML boundary conditions without the presence
of a mean-flow in the boundary region.

Our approach to obtaining a PML boundary formulation for the
incompressible Navier-Stokes equations is based on applying a
change of variables in the frequency domain. This approach has
successfully been used to realize PML-type boundaries in Hu et al.
[2008], Berenger [1994], Richards et al. [2004], and Hu [2001a]
among others. The transformation typically used is

x → x + i

ω

∫ x1

x0

σ (x)dx, (5)

where ω is the frequency, σ (x) is a dampening function to be deter-
mined later (σ (x) ≥ 0 ∀ x), and x0 is the position of the boundary
between the regular Navier-Stokes equations and the PML bound-
ary region. We will refer to this as the inner boundary as opposed to
the solid wall outer boundaries surrounding the simulation domain.
The width of the PML boundary region is |x1 − x0|. To give an in-
tuition for the behavior of this transformation, consider a complex
wave component of the form

ei(kx−ωt). (6)

If we apply (5) to (6) we obtain

ei(kx−ωt)e
− k

ω

∫ x1
x0

σxdx
. (7)

As can be seen the second term of Eq. (7) represents exponential
decay, assuming k

w
≥ 0 and σx ≥ 0, that is, we can achieve expo-

nential dampening of wave components moving through the region
where the transformation (5) is used. We note that there are some
stability issues involved in guaranteeing k

w
≥ 0 when a mean-flow is

present, a scenario well described in Hu [2008] among others. How-
ever, since we assume that we have no mean-flow in the boundary
region this is not an issue we will address in this article.

We will now derive the PML formulation for Eq. (4). We start by
writing the integral Eq. (5) as its differential equivalent

∂

∂xβ

→ 1

1 + i
σβ

ω

∂

∂xβ

. (8)

Since Eq. (8) operates on spatial differentials it will prove conve-
nient to introduce the vectors

eβ = ∂v
∂xβ

. (9)

We may now consider the flux vectors Fβ as functions of u and eβ .
At this point we transform Eqs. (4) and (9) to the frequency domain
and apply the transformation (8). This yields the equations

−iωũα +
∑

β

1

1 + i
σβ

ω

∂F̃α,β

∂xβ

= f̃α, (10)

ẽβ = 1

1 + i
σβ

ω

∂ ṽ
∂xβ

, (11)

where we have used the symbol˜to denote the frequency transform.
Note that Eq. (10) assumes that all wave components can be written
in the form ei(g(x)−ωt) for some arbitrary function g. Our next step is
to transform these equations back to the spatial domain. However,
due to the presence of an external force term on the right-hand side
of Eq. (10) we can no longer directly follow the approach of Hu et al.
[2008]. At this point we note that though complex external force
interactions may be present in the regular simulation domain this
will typically be some distance from the actual walls of the domain.
Based on this we make the assumption that all external forces in the
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PML boundary region are conservative. This obviously includes the
force of gravity but could potentially also be used for other types of
interactions. Any conservative force f can be written in the form

f = −∇U, (12)

where U is the potential field associated with f. By applying
Eq. (12) to Eq. (4) we can rewrite Eq. (10) as

−iωũα +
∑

β

1

1 + i
σβ

ω

∂
(
F̃α,β + δα,βŨ

)
∂xβ

= 0, (13)

where δα,β is the Kronecker delta symbol, that is, δα,β = 1 if α = β
and 0 otherwise. Eqs. (11) and (13) are now in a form that can be
transformed back to their spatial representation by employing the
split variable approach described in Berenger [1994], and Hu [1995]
among others. We start by introducing the auxiliary variables qα,β

which satisfies the equations

uα =
∑

β

qα,β (14)

−iωq̃α,β + 1

1 + i
σβ

ω

∂F̃α,β + δα,βŨ

∂xβ

= 0. (15)

Here the variables q0,β can be interpreted as a vector density. It will
soon be evident that these potentially time-dependant density com-
ponents results in the pseudocompressible behavior we described
in the beginning of this section. Consequently the variables q2,β ,
q3,β , and q4,β can be interpreted as components of a velocity tensor
field. We will later see that this tensor velocity allows for direc-
tional dampening of the Navier-Stokes momentum equation. The
relation between the qα,β tensor and the components {vx, vy, vz} of
the velocity vector v can be obtained by tensor contraction of qα,β

along the directional index β, that is, Eq. (14). The split of Eq. (13)
allows us to multiply the left- and right-hand side of Eqs. (11) and
(15) with 1 + i

σβ

ω
. This yields

(−iω + σβ )̃qα,β + ∂F̃α,β + δα,βŨ

∂xβ

= 0 (16)

(
1 + i

σβ

ω

)
ẽβ = ∂ ṽ

∂xβ

. (17)

To transform Eq. (17) into a partial differential equation we now
introduce the auxiliary variables rβ , such that

∂rβ

∂t
= eβ . (18)

After applying Eq. (18) to (17) we finally perform the transforma-
tion back to the spatial domain and thus obtain the complete set of
equations describing the PML boundary condition for the incom-
pressible Navier-Stokes equations in the presence of a conservative
external force.

∂qα,β

∂t
+ σβqα,β + ∂Fα,β + δα,βU

∂xβ

= 0 (19)

∂rβ

∂t
+ σβrβ − ∂v

∂xβ

= 0 (20)

eβ = ∂v
∂xβ

− σβrβ (21)

In addition to these equations we also have Eq. (14) describing the
relation between qα,β and uα .

The preceding set of equations can also be written in a somewhat
simpler and more familiar form by combining (19), (20), (21), and
(14). We have

∂u
∂t

+ ∂F1

∂x1
+ ∂F2

∂x2
+ ∂F3

∂x3
+ σ1q1 + σ2q2 + σ3q3 = f (22)

or

∂v
∂t

+ (v · ∇)v = f
ρ

+ (∇ · τ )T − ∇p

ρ
− σ1Aq1 − σ2Aq2 − σ3Aq3 (23)

∇ · v = −σ1Bq1 − σ2Bq2 − σ3Bq3 (24)

where

A =
⎛
⎝ 0 1 0 0

0 0 1 0
0 0 0 1

⎞
⎠ , B = (

1 0 0 0
)
. (25)

As can be seen, the four equations in (3) have become twelve
equations for the qα,β fields, nine equations for the rβ fields, and
nine equations for the eβ fields for a grand total of 30 equa-
tions. Additionally we have the three equations in (14) relating
qα,β and v. This obviously increases the computational complexity
when solving Eqs. (19) through (21), however, as we will show in
Section 6 we can solve these equations approximatly. This will re-
duce the number of equations and unknowns to 12, thus significantly
reducing the computational complexity and memory overhead of
our method. Still, the task of solving the system of equations pre-
sented earlier may appear daunting. However, the solver presented
in Section 6 will prove to be rather similar to the familiar stable fluids
method, showing that PML boundaries can be employed without
much complexity added to one of the common solution methods
used in computer graphics.

5. FREE SURFACE FLUID SIMULATION WITH
PML BOUNDARIES

Solving Eqs. (19) through (21) in the compressible case, without
the presence of a free surface or external forces has been done in Hu
et al. [2008] using the viscous aeroacoustic approach [Li and Gao
2005, 2008] together with a dispersion-relation-preserving scheme
[Tam and Webb 1993] and a high-order Runge-Kutta scheme [Hu
et al. 1996]. However, we now seek a way to solve these equations
that is more appropriate for visual effects, that is, a scheme for
incompressible fluids that is stable, fast, and accurate enough to
yield visually pleasing results. Furthermore we want to be able to
handle external forces and the presence of a free surface. Shortly we
will outline our algorithm for solving Eqs. (19) through (21) under
these conditions.

5.1 Boundary Conditions for the Velocity Tensor

Next we shall derive appropriate Dirichlet boundary conditions for
the auxiliary variables qα,β at solid boundaries. The Dirichlet bound-
ary condition for the velocity field v at a solid boundary reads

v · ns = vs · ns . (26)

This simply states that the fluid velocity v along the boundary
surface normal ns should equal the velocity of the boundary vs

along the same normal. Thus we can extrapolate this condition to
the velocity-related components of the tensor field qα,β , that is, the
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components where α > 0, leading to the equation

qα,βns
α = qs

α,βns
α, α > 0, (27)

where ns
α are the components of the boundary surface normal and

qs
α,β is the tensor velocity of the boundary. Here we simply state

that for the fluid tensor field neighboring a solid surface the vector
associated with the plane to which ns

α is a normal component equals
the corresponding vector for the solid boundary. For the velocity
tensor T = qα,β , α > 0 we can write this condition as

nT
s T = nT

s Ts . (28)

Here nT
s denotes the transposed solid surface normal.

Due to the presence of a free surface we also need to apply an
appropriate boundary condition at the fluid/air interface. In this case
we will use a continuative boundary condition, that is, we assume
that the motion of the medium surrounding our fluid is completely
governed by the motion of the fluid itself. Thus we can apply the
tensor equivalent of the velocity extension algorithm described in
Osher and Fedkiw [2002] among others. This amounts to solving
the equation

∂qα,β

∂τ
+ n · ∇qα,β = 0, (29)

where n is the fluid surface normal and τ is the fictous time used
to propagate the solution to a steady state. The solution to this
equation will guarantee that qα,β outside the fluid is constant along
the direction of the fluid surface normal.

5.2 The Dampening Function σ

The transition from the regular simulation domain to the PML
boundary region can be achieved in several ways. The simplest
is to assume that the dampening function σ is a step function. How-
ever, this is problematic since Eq. (21) will lead to terms of the
form ∂σβ rα,β

∂xβ
which makes the choice of a discontinuous σ function

inappropriate. Furthermore we suspect that a smooth transition will
provide better numerical results. In Richards et al. [2004] a transfer
function of the form

σ (x) = xγ

ε
(30)

was used. The optimal choice of γ was found to be problem depen-
dant, however, a choice of γ ≈ 2 generally provided good results.
However, due to the exponential nature of (7) we suspect that a
function more related to exponential growth might provide better
results. Thus we also introduce two trigonometric-based dampen-
ing functions. The first is a smooth step function of height 1 and
width ε.

σ (x) =

⎧⎪⎨
⎪⎩

0 x < 0

1 x > ε
x

ε
− 1

2π
sin

(
2πx

ε

)
x ∈ [0, ε]

(31)

In Section 8.1 we will evaluate this choice of function through
numerical experiments. We will also investigate the “half step”
function

σ (x) =

⎧⎪⎨
⎪⎩

0 x < 0

1 x > ε
x

ε
− 1

π
sin

(
πx

ε

)
x ∈ [0, ε]

(32)

as well as the function (30) with γ = 2.
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Fig. 2. Smooth step dampening function for different values of ε.
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Fig. 3. Comparison between the different transfer functions described in
Section 5.2. For the step functions ε = 1.0 has been used. All functions
have been normalized such that

∫ 1
0 σ (x)dx = 0.5.

The shape of function (31) for different values of ε can be seen
in Figure 2 and a comparison between the three types of transfer
function mentioned above is shown in Figure 3.

5.3 Estimating Maximum Dampening

Eq. (7) indicates that our PML boundary condition can theoretically
yield an exponentially decaying solution in the boundary region.
Thus we assume that the height of an incoming surface wave will
be dampened exponentially as it travels through the domain. Based
on this we approximate the amount of dampening needed to reduce
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Fig. 4. An example of boundary zones. The dashed lines are the inner
boundaries and the thick outer rectangle is the outer boundaries, that is, the
actual physical walls of the simulation domain. In the area in the middle we
solve the regular, undampened Navier-Stokes equations.

reflections by a factor D through the equation

1 − D = e
− k

ω

∫ x1
x0

σmaxσ (x)dx ⇒, (33)

σmax = − ln(1 − D)
k

ω

∫ x1
x0

σ (x)dx
, D ∈ [0, 1], (34)

where L is the width of the relevant boundary zone and D is the
desired dampening given as a fraction. D = 0.9 means that we
desire the boundary to reduce the incoming wave amplitude by
90%. In order to simplify our scheme we want to avoid calculating
the fraction k

ω
. Thus we will assume

k

ω
= 1, (35)

and instead try to estimate the optimal dampening D through ex-
periments in Section 8.1. This approach essentially assumes that
we have a nondispersive medium, which typically is not true. Thus
the optimal σmax will be problem dependant under this assumption.
However, in Section 8 we will show that a σmax estimated for one
scenario can be used with good dampening results in a multitude of
similar scenarios.

5.4 Defining the Boundary Regions

For the PML boundary condition to work we need to define buffer
zones close to the actual solid wall boundaries. Inside these buffer
zones we apply the modified Navier-Stokes equations (19) through
(21) derived earlier, thus achieving absorption of waves entering this
region. Outside the buffer zones we solve the regular, unmodified
Navier-Stokes equations. In order to define these regions we present
two methods: an explicit axis-aligned boundary and an implicit
boundary for general, complex shapes.

Axis-aligned boundaries. The first method puts emphasis on the
directional nature of the PML boundary representation derived be-
fore. The σ = {σ1, σ2, σ3} vector defines the dampening in each
Cartesian direction and by placing planes in these directions we
can define regions in which only one σ component is nonzero. An
example of this can be seen in Figure 4. Note that the corners of the
simulation domain will have two nonzero σ components (in 2D).

Level set boundaries. For complex boundary shapes we will use
level sets [Adalsteinsson and Sethian 1995; Osher and Fedkiw 2002]
to represent the PML boundary region. For compact and efficient
storage of boundaries regardless of their complexity we employ the
compressed tubular level set framework of Nielsen et al. [2007].
Using level set boundaries we can calculate normals at any point
in the boundary domain. This allows us to calculate the amount of
dampening applied at a point p through

σ = σn, (36)

where σ is given by Eq. (31) and n is the normal of the level curve
that intersects p.

6. SOLVING THE WAVE ABSORBING
NAVIER-STOKES EQUATIONS

In this section we will show how to solve our modified Navier-
Stokes equations in the PML boundary region. Our approach will
be based on the popular stable fluids method and we will also use
the regular stable fluids algorithm to solve for the velocity field
outside of our PML boundaries. Note that in the boundary region
we will typically deal with the auxiliary variables qα,β which can
be seen as a tensor velocity field for α > 0 and the q0,β components
can be interpreted as a vector density. The regular velocity field v
can at any time be obtained through Eq. (14). By making use of the
operator splitting approach of the stable fluids method our scheme
for updating the auxiliary tensor field Q ≡ qα,β one timestep will
be

Qt

dampen & advect→ Q1
viscosity→ Q2

f orces→ Q3
project→ Qt+�t ,

where Qt is the solution at the beginning of our timestep and Qt+�t

is the new solution to the boundary equations at time t + �t .
In order to facilitate this approach we start by noting that Eq. (19)

can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α = 0 :

∂qα,β

∂t
+σβqα,β + ∂vβ

∂xβ

=0

α = 1, 2, 3 :

∂qα,β

∂t
+σβqα,β + ∂vαvβ

∂xβ

+δα,β

1

ρ

∂Uβ

∂xβ

− ∂τα,β

∂xβ

+δα,β

1

ρ

∂p

∂xβ

=0.

(37)

The first row of (37), that is, α = 0 corresponds to the conserva-
tion of mass and describes the pseudo-compressible nature of our
boundaries. This equation will be tightly coupled with the projection
step. The remaining three equations of (37), that is, α = {1, 2, 3}
correspond to the conservation of momentum. By introducing the
index λ = {1, 2, 3} and using the operator splitting approach we
can identify the integration steps of the stable fluids algorithm as
follows.

—Dampened self-advection:

∂qλ,β

∂t
+ σβqλ,β + ∂vλvβ

∂xβ

= 0

—Viscosity:

∂qλ,β

∂t
− ∂τλ,β

∂xβ

= 0

—External forces:
∂qλ,β

∂t
+ δλ,β

∂U

∂xβ

= 0
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—Projection:

∂qλ,β

∂t
+ δλ,β

1

ρ

∂p

∂xβ

= 0 and
∂q0,β

∂t
+ ∂vβ

∂xβ

= 0

We will now go through each of these equations and describe how
they can be solved.

6.1 The Dampened Self-Advection Term

The first step of our solution algorithm is to obtain the field Q1 from
Qt by accounting for dampening and self-advection. This amounts
to solving the equation

∂qλ,β

∂t
+ σβqλ,β + ∂vλvβ

∂xβ

= 0. (38)

We also solve the equation

∂q0,β

∂t
+ σβq0,β + ∂vβ

∂xβ

= 0, (39)

that is, the first equation of (37) during this step. We have as of
yet not been able to construct an unconditionally stable integration
scheme for Eqs. (38) and (39) and thus for the scope of this article
we will focus on solving Eqs. (38) and (39) through explicit integra-
tion. However, we will derive an explicit integration scheme with a
stability condition that is independent of the dampening σβ , hence
allowing for fast integration even for very large σmax. In Section
8.1.4 we will show that the reflection preventing properties of our
boundaries are virtually unaffected by the use of this scheme.

Our first step is to assume that vβ is constant during each timestep,
that is, the same assumption employed by the stable fluids method.
This allows us to treat Eq. (38) as dampened advection, as opposed to
dampened self-advection. Inspired by the analysis in Baldauf [2008]
we will solve this equation using third-order TVD Runge-Kutta [Shu
and Osher 1988] together with fifth-order WENO upwinding [Liu
et al. 1994]. Note that though the scheme to follow is derived for
Eq. (38) the equivalent method can be used for solving Eq. (39). We
now make the assumption that ∂vλvβ

∂xβ
is constant during our timestep.

By making this assumption we can reduce Eq. (38) to a first-order
ODE to which the solution is

qλ,β = − C

σβ

+
(

q0λ,β + C

σβ

)
e−σβ t , (40)

where C = ∂vλvβ

∂xβ
and q0λ,β is the value of qλ,β at the beginning of the

current timestep. Eq. (40) can now be seen as a model approximating
Eq. (38) for small timesteps. Thus we propose to use this model
instead of Eq. (38) when integrating the self-advection term in the
boundary region. Note that Eq. (40) is also well behaved for σβ → 0.

Assuming that qλ,β follows the model in Eq. (40), and σβ is time
independent we next see that

∂qλ,β

∂t
= ∂

∂t

(
− C

σβ

+
(

q0λ,β + C

σβ

)
e−σβ t

)
⇒ (41)

∂qλ,β

∂t
= −q0λ,βσβe−σβ t − Ce−σβ t (42)

which when discretized can be integrated by parts using the oper-
ator splitting approach employed by the stable fluids method. The
scheme for updating qλ,β will be

q0
λ,β → q1

λ,β → q2
λ,β ,

where q0
λ,β is the initial q field and q2

λ,β is the resulting field after
solving Eq. (42). The field q1

λ,β can be calculated from q0
λ,β by

solving

∂qλ,β

∂t
= −q0λ,βσβe−σβ t (43)

and q2
λ,β can then be calculated from q1

λ,β by solving

∂qλ,β

∂t
= −Ce−σβ t . (44)

The assumption of pure advection allows us to write Eq. (44) as

∂qλ,β

∂t
= −vβe−σβ t ∂vλ

∂xβ

(45)

which when discretized has a CFL stability condition limited by
|vβe−σβ t |. Since we know that σβ ≥ 0 and t ≥ 0 this condition
will at worst be equal to that of the undampened advection. Thus,
using the model in Eq. (40) the stability of Eq. (44) is not adversely
affected by the size of the dampening coefficient σβ .

In order to investigate the stability of Eq. (43) we assume that it
will be solved using simple first-order Euler integration. This gives
us

qt+�t
λ,β = (

1 − �tσβe−σβ�t
)
q0λ,β , (46)

where qt+�t
λ,β is our approximate solution to (43) at time t + �t and

q0λ,β is the solution at time t. We now note that

σβ�te−σβ�t ∈ [0, e−1], ∀ σβ ≥ 0, ∀ �t ≥ 0. (47)

Performing Von Neumann stability analysis of Eq. (46) readily
shows that it is unconditionally stable since �t ≥ 0 and σβ ≥ 0.
However, note that the combined scheme still has a CFL stability
condition due to Eq. (44). As a result we conclude that by integrat-
ing Eq. (40) instead of (38) we have obtained a numerical scheme
with a stability condition that is not adversely affected by the size of
σβ . The preceding reasoning is valid for first-order time discretiza-
tion. However, it follows that any higher-order scheme that can be
described as a convex combination of such first-order integration
steps, for example the TVD Runge-Kutta scheme, will also have a
CFL stability condition equivalent to that of this first-order method.
For the specific stability conditions of such higher-order schemes
consider for example the work by Gottlieb and Shu [1998].

6.2 The Viscosity Term

In order to obtain the field Q2 from Q1 we need to account for the
effect of viscosity through the equation

∂qλ,β

∂t
= ∂τλ,β

∂xβ

(48)

which, assuming incompressibility and constant viscosity, can be
written as

∂qλ,β

∂t
= ν

∂eλ,β

∂xβ

. (49)

For incompressible flow this equation is dominantly parabolic
and thus numerically troublesome. Though we can solve Eq. (49)
through explicit integration we consider this too slow to be practi-
cal. The stable fluids approach solves this problem through implicit
integration and thus we attempt to do the same. By substituting eλ,β
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from Eq. (21) we arrive at the following equation describing the
effect of viscosity in the PML boundary.

∂qλ,β

∂t
= ν

∂
(

∂vλ

∂xβ
− σβrλ,β

)
∂xβ

(50)

Using Eq. (14) we can rewrite this as

∂v
∂t

= ν∇2v − ν
∂σ1r1

∂x̄1
− ν

∂σ2r2

∂x̄2
− ν

∂σ3r3

∂x̄3
(51)

which tells us that this term consists of the familiar velocity diffusion
term and a set of correction terms containing the auxiliary tensor
field rβ . In order to solve for this term in a fast and efficient manner
we will make the assumption that the contribution of the correction
terms in Eq. (51) is small. That this can be the case is supported by
the experimental results in Section 8.2. Thus, for the scope of this
article, we will focus only on the diffusive part of Eq. (49) and drop
the auxiliary variables rβ entirely. This greatly reduces the number
of auxillary variables needed by our scheme and leaves us with the
equation

∂qλ,β

∂t
= ν

∂2vλ

∂x2
β

(52)

which we solve through implicit integration using the conjugate
gradient method.

6.3 External Force Term

At this point we can proceed to calculate the field Q3 from Q2 by
solving the equation

∂qλ,β

∂t
+ δλ,β

∂U

∂xβ

= 0. (53)

To solve Eq. (53) we use first-order Euler integration if U is time
independent and third-order TVD Runge-Kutta otherwise.

6.4 Pressure Correction

As the final step of our solution algorithm we want to account
for the effects of internal pressure. In order to do so we employ a
modified version of the projection method of Chorin [1968]. First
we apply Eq. (14) to calculate the velocity field u from the tensor
field Q3. At this point we note that the right-hand side of Eq.
(24) is not zero, implying that the auxiliary variables q0,β act as
sources and sinks in the boundary region. Thus we interpret them
as such and modify the standard projection step with these artificial
sources/sinks added to the pressure Poisson equation. This will
account for the pseudocompressible nature of our boundaries. The
modified projection equation becomes

�t

ρ
∇2p = ∇v + σ1Bq1 + σ2Bq2 + σ3Bq3 (54)

and its solution gives us the field p which can be interpreted as
pressure. We can now obtain our final tensor field Qt+� from Q3 by
solving the equation

∂qλ,β

∂t
= −δλ,β

1

ρ

∂p

∂xβ

. (55)

7. ADDITIONAL REFLECTION REDUCING
TECHNIQUES

In order to test the performance of our wave absorbing boundary
we will compare its effectiveness against two additional reflection

preventing techniques which we denote respectively “explicit damp-
ening” and “implicit dampening” [Richards et al. 2004]. Both these
methods are well known in the field of physics but to the extent of
our knowledge neither of them has previously been applied to free
surface incompressible flow.

7.1 Explicit Dampening

As with our PML-based method this technique also relies on bound-
ary zones in which alternative physics is applied in order to achieve
dampening of wave reflections. Explicit dampening is a very simple
wave dampening method that works by direct modification of the
velocity field. Though high-quality results can be obtained through
this method large boundary zones are typically required for it to be
effective [Richards et al. 2004]. The explicit dampening boundary
condition can be formulated as

unew = v − (v − vtarget )σ , (56)

where v is the velocity field, vtarget is the target velocity at the solid
boundary, and σ is a spatially varying function that is zero outside
the boundary region and one close to the actual physical boundaries,
of the simulation domain. Eq. (56) is applied at every iteration of
the fluid solver and achieves dampening by simply reducing the
velocity vectors in the boundary region. In Richards et al. [2004] a
transfer function of the form

σ =
(

d

L

)γ

(57)

was used for dampening the compressible Euler equations. In Eq.
(57) d is the distance from the outer boundary (the wall) and L is the
width of the dampening region. The optimal value for γ is problem
dependant. However, as demonstrated in Richards et al. [2004],
γ ∈ [2, 2.5] appears to be an overall good choice and thus we use
this transfer function with γ = 2 in our tests. A significant problem
with the explicit dampening method is to determine the optimal
target velocity vtarget . Ideally this velocity at the outer boundary
should be such that a reflected wave is completely dampened out
the moment before it reaches the inner boundary again. However,
due to the unpredictable dampening performance of the explicit
method such a target velocity is nontrivial to estimate in general.
Thus we find that the best choice for a general scenario is vtarget =
0, that is, that all wave motion at the outer boundary has been
completely dampened out. Thus our explicit dampening formulation
becomes

unew = u − u
(

d

L

)2

. (58)

7.2 Implicit Dampening

We will also make use of implicit dampening, another fairly sim-
ple technique for reducing wave reflection. In this case we add a
dampening term to the Navier-Stokes equations and solve the result-
ing equations using the stable fluids method. This method requires
fairly small timesteps for large values of σ and can hence be rather
slow. The Navier-Stokes equations for implicit dampening in the
boundary region reads

∇ · v = 0 (59)
∂v
∂t

+ (v · ∇)v = f
ρ

+ ν∇2v − ∇p

ρ
− σv. (60)

For these equations we will use the same σ function as for our PML
method, that is, Eq. (31).
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Fig. 5. A rendering depicting the Pebble in the Pond scenario at times 0.1,
0.6, and 0.8 seconds into the simulation.

8. RESULTS

In order to test the behavior and performance of our PML based
boundary condition we have run a series of simulations correspond-
ing to graphics scenarios where wave reflection is undesirable. In
order to measure the effectiveness of the nonreflective boundaries
we look at the total kinetic energy of the simulation∫

V ol

1

2
u · u dV (61)

as well as the flux ∫
δVol

u · nδVoldA (62)

through the planes separating the simulation domain from the damp-
ening zones near the boundary. We also use visualizations of the
offset of the water surface from its equilibrium state in order to
better show the wave patterns that develop on the fluid surface. The
color map used for the surface offset visualizations are provided to
the right of these figures and measures the height of the fluid surface
in voxels.

8.1 The Pebble in the Pond

Our first test simulation corresponds to a drop of water hitting the
surface of a pond (see Figure 5), generating waves that propagate
outwards in rings. This setup is fairly simple and controlled and thus
we will use it to investigate the effect of several of the parameters
involved in the PML boundary formulation. For all tests in this
section a simulation domain of 165×70×165 voxels was used.

8.1.1 Transfer Function Comparison. When moving from the
regular simulation region to the boundary region we need to change
σβ from 0 to σmax. This can be done through a simple step function
but we suspect that a smoother transition will yield better results.
The transfer functions tested can be seen in Figures 2 and 3. In the
figures that follow we have described the step width ε as a fraction
of the boundary width. The dampening percentage is calculated
through Eq. (34) with k

ω
= 1, thus 99% dampening equals σmax ≈ 77.

As can be seen from the results displayed in Figure 6 the sharpness
of our smooth step function does make a difference. For ε = 0.1 we
see a distinct interference pattern after around 8 seconds. Due to the
construction of our simulation this deviation from a pure decaying
oscillation must be caused by wave reflection. We can also see that
though good results are obtained for ε > 0.4 the best result seems
to be obtained for ε = 1 and thus we conclude that this is the best
shape of the “smooth step" transfer function.

Since a sharp transfer function has a larger integration area and
thus results in more aggressive dampening for a given σmax we
need to test the effect of different σmax on the smooth step function
with low values of ε. This in order to verify that the differences
in Figure 6 are due only to the shape of the transfer function and
not the increased integration area. As can be seen from the results
in Figure 7 even at σmax = 38, that is, roughly half of what is
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Fig. 6. Energy and flux profiles for varying shape of the “smooth step”
boundary transfer function. The step width (i.e., ε) is given as a fraction of
the boundary width which is 6% of the width of the simulation domain (i.e.,
10 voxels) for this simulation.

used in Figure 6 we see a distinct interference pattern. This is
consistent with the previous claim that a smooth transfer function is
the most appropriate. Note that since the difference in area between
the smooth step at ε = 1 and ε = 0.1 is approximatly 2 the amount
of dampening provided by the smooth step with ε = 0.1 and σmax =
38 should roughly equal that of the smooth step with ε = 1 and
σmax = 77.

We now proceed to investigate the effectiveness of the two addi-
tional transfer functions presented in Section 5.2, namely Eqs. 30
and 32. In order to make this a fair comparison we have normalized
all functions so that the integral of the dampening function across
the boundary is the same as for our step function. This should ensure
that the amount of dampening is the same and any differences are
only caused by the shape of the function. As can be seen from the
results in Figure 8 all transfer function shapes tested do a good job at
preventing reflections. The symmetric step function does, however,
absorb less kinetic energy while still preventing reflection as well as
the other two shapes. Thus we conclude that this shape is the most
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Fig. 7. This graph shows the effect of different σmax on an aggressive
transfer function (stepwidth = 0.1). A smooth step (stepwidth = 1.0) is
provided as a reference. 90%, 95%, and 99% dampening correspond to
σmax = 38, 50, and 77 in this test.

effective. However, from Figures 6 and 8 it is evident that as long as
the function is fairly smooth it is effective for preventing reflection.

8.1.2 Effect of Different σmax. We now proceed to investigate
the effect of different σmax on the smoothest step function (stepwidth
= 1.0). As can be seen in Figure 9 we have almost no wave reflections
for all our tested values of σmax. However, if we look closely we can
see that the result for 99% dampening is better than for both 95%
and 99.9%. Thus we conclude that for this simulation an optimum
exists close to σmax = 77, that is, 99% dampening and we will use
this setting henceforth.

8.1.3 Effect of Boundary Width. Next we will investigate the
importance of the width of the dampening region. The results of this
test can be seen in Figure 10. Here we see the expected result that
the performance of our boundary is better the wider the boundary
region is. We also note that a width of 6%, that is, 10 voxels seems
to be sufficient and even 3% is enough to prevent most of the wave
reflection.
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Fig. 8. Comparison between our three different types of σ function: The
smooth step (31), the half step (32), and the quadratic function (30). For all
tests σmax = 77 and the boundary width is 6%.

8.1.4 Effect of PML Stabilization. In Section 6.1 we have de-
rived a method to stabilize the time integration for large values of σ .
We now investigate the effect of this approach on dampening perfor-
mance and stability. For this test we will not adapt our timestepping
to the requirements of our boundary condition. Instead we will only
use the timestepping constraint associated with the undampened
simulation, that is, σ = 0. As can be seen in Figure 11 this does
cause an instability for the aggressive case of a narrow boundary
and a desired reflection of 1% of the incoming wave amplitude.
However, as we enable our time integration stabilization, without
any changes to the timestepping condition itself, the simulation is
once again stable. We also see that the shape of the flux plots in
Figure 11 show an exponentially decaying oscillation for all stable
test cases, indicating no detectable reflection. However, the aggres-
sive dampening of the 3% boundary (with proper timestepping)
evidently dissipates a lot of energy from the simulation. We suspect
that this may be caused by increased numerical dissipation due to
the increased number of iterations needed to obtain a stable solution
for this case. Another possible explanation is that the large amount
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Fig. 9. This graph shows the effect of different σmax on a smooth transfer
function (stepwidth = 1.0). 90%, 95%, 99%, and 99.9% dampening corre-
sponds to σmax = 38, 50, 77, and 115 in this test.

of dampening necessary to obtain 1% reflection for this extreme
case is responsible for removing excessive amounts of energy from
the rest of the simulation domain. In either case the results shown
in Figure 11, indicate that for very aggressive dampening our PML
stabilization scheme is in some cases preferable to proper timestep-
ping not only because of low computational cost but also with regard
to visual quality of the simulation.

8.1.5 Boundary Effectiveness. Finally we compare the effec-
tiveness of our three reflection preventing methods: explicit damp-
ening, implicit dampening, and our PML-based wave absorbing
approach. For these tests we have used a 6% boundary thickness
and our boundaries once again use the time integration stabiliza-
tion described in Section 6.1. As can be seen from the energy and
flux graphs in Figure 13 the superior performance of our method
is evident under these conditions. This result is further supported
when looking at the fluid surface offset visualizations, that is, wave
pattern visualizations, provided in Figures 14 to 17. We see that
all methods except our PML-based method exhibit clearly visible

0 2 4 6 8 10 12
10

−7

10
−6

10
−5

10
−4

time

to
ta

l k
in

et
ic

 e
ne

rg
y

99% dampening, stepwidth = 1.0, width = 3%
99% dampening, stepwidth = 1.0, width = 6%
99% dampening, stepwidth = 1.0, width = 9%

0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

time

to
ta

l f
lu

x 
tr

ou
gh

 a
ll 

bo
un

da
rie

s

99% dampening, stepwidth = 1.0, width = 3%
99% dampening, stepwidth = 1.0, width = 6%
99% dampening, stepwidth = 1.0, width = 9%

Fig. 10. Effectiveness of dampening for different width of the boundary.
Boundary width is given as a percentage of the width of the simulation
domain. 3% corresponds to 5 voxels.

interference patterns caused by undesired wave reflections from
the physical walls of the simulation domain. When looking at the
graphs in Figures 10 and 12 it is also interesting to note that our
boundary condition at half the boundary width, that is, 3%, is still
more effective then both explicit and implicit dampening in this
test.

8.1.6 Speed Comparison. In the boundary domain our method
needs up to 12 vector components to represent the velocity field
instead of the regular 3. Since the computations performed on each
component are very similar to that of the undampened solver an
approximate upper bound for the computational cost of our PML
condition is 4x the cost when our boundaries are not present. This
cost corresponds to the case where every voxel in the simulation do-
main is a boundary voxel. However, as is evident from the results in,
for example, Figure 11, our boundaries are efficient using boundary
widths of only 3–6% of the width of the simulation domain. Thus
the real-world cost of using our method is significantly lower than
the estimated upper bound.

ACM Transactions on Graphics, Vol. 29, No. 5, Article 136, Publication date: October 2010.
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Fig. 11. This graph shows the effects of the PML stabilization. We use a
boundary of width 3% and 6% (5 and 10 voxels) and using unaided explicit
integration as a reference.

Fig. 12. A rendering depicting the Speedboat scenario at times 1.0, 2.2,
and 3.4 seconds into the simulation.

In order to measure the computational cost of our boundaries
we have performed the “Pebble in the Pond” simulation using ex-
plicit dampening, implicit dampening, and our PML-based method.
The simulation with PML boundaries uses the time integration sta-
bilization presented in Section 6.1. As a reference we have also
performed the simulation using an undampened stable fluids solver.
Note that in this case we have assumed that all σβ components can
be nonzero. If the directional boundaries described in section 5.4
are used only one σβ component is nonzero with the exception of
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Fig. 13. Comparative results between an undampened reference simulation
and the three types of reflection preventing boundary conditions mentioned
in this article. The boundary width is 10 voxels and for implicit and PML
dampening σ = 77 is used.

Fig. 14. Surface offset visualization for the “Pebble in the Pond” reference
simulation at time 1.1, 2.4, 7.2, and 10 seconds, respectively.

the corners. This allows for further optimizations which can po-
tentially reduce the cost of our boundaries further. As can be seen
from the results presented in Table I the computational cost for our
boundary in the unoptimized case is approximately 1.75x that of
the undampened simulation. The cost of using implicit dampening
is fairly high due to the additional number of iterations necessary to
ensure stability when a dampening term is present. The negligible
cost of applying explicit dampening is also evident; the explicitly
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Fig. 15. Surface offset visualization for the “Pebble in the Pond” simulation
using explicit dampening. The images shows the simulation at time 1.1, 2.4,
7.2, and 10 seconds, respectively.

Fig. 16. Surface offset visualization for the “Pebble in the Pond” simulation
using implicit dampening. The images shows the simulation at time 1.1, 2.4,
7.2, and 10 seconds, respectively.

Fig. 17. Surface offset visualization for the “Pebble in the Pond” simulation
using our PML-based wave absorbing boundaries. The images show the
simulation at time 1.1, 2.4, 7.2, and 10 seconds, respectively.

dampened simulation actually takes less time than the undampened
reference simulation. This is caused by the explicit method being as
fast as the reference simulation but due to the dampening of waves
we can take progressively larger timesteps, resulting in a slightly
faster simulation.

The negligible cost of the explicit dampening method calls for
further investigation. We could significantly increase the width of
the boundary region for the explicit method before we reach the
computational cost of our PML approach. In Figure 18 we have
shown the results obtained when this is done. The average time
per frame for the explicit simulation is now 184 seconds and the
boundary width is 50 voxels. The size of the undampened cen-
tral region for both simulations are equal. As can be seen from
Figure 18 the explicit method works much better with these wide
boundaries, however, in spite of boundary regions covering nearly
60% of the fluid surface the explicit method is still unable to ob-
tain the reflection preventing qualities of our boundaries. This is
even move evident if one studies the surface offset visualizations in
Figure 19.

8.2 The Pebble in the Pond - Viscous

This test is designed to show the performance of our PML-based
boundary for viscous fluids. The setup is the same as for Section
8.1 before: a drop of water falling into a pond. In this case we
imagine the fluid being cold motor oil (ν = 8.1 Stokes). As can
be seen from Figure 20 our method maintains its effectiveness also
for this scenario. Thus we conclude that our method can be used as
a reflection-preventing technique for viscous fluids in spite of our
approximation in Section 6.2.

Table I. Time Required for Completing One Frame of the
“Pebble in the Pond” Simulation Using Different Dampen-
ing Methods

Reference Explicit Implicit PML

Time/frame (s) 90 86 137 156
Relative time 1.00 0.96 1.54 1.74
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Fig. 18. Comparison between explicit and PML boundaries at roughly the
same computational cost. The boundary widths are 50 voxels for the explicit
simulation and 10 voxels for the PML dampened simulation. The average
time per frame is 184 seconds for the explicit method and 156 seconds for
the PML simulation. Only the boundary widths are different; the size of the
undampened region is equal in both simulations.

8.3 Speedboat

The speedboat simulation (see Figure 12) is intended as an example
of a nontrivial use of our PML boundary condition. Here we have
used the level set boundary approach in Section 5.4 in order to
create a smooth and nontrivial boundary shape. For this simulation
we have created a bottle-like boundary that allows the boat to enter
and leave the simulation domain through a narrow opening. An
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Fig. 19. Surface offset visualization for the “Pebble in the Pond” simula-
tion using wide explicit boundaries. The total area of the boundary region
corresponds to roughly 60% if the entire simulation domain. The images
shows the simulation at time 1.1, 2.4, 7.2, and 10 seconds, respectively.
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Fig. 20. This graph shows the behavior of our wave absorbing boundary
for a viscous fluid with ν = 8.1 Stokes. As a reference the same simulation
with ≈ 0 viscosity is also provided.

illustration of this boundary shape is provided in Figure 21. The
kinetic energy diagram for this simulation can be seen in Figure
22 and a visualization of the fluid surface offset at different points
in time is presented in Figure 23. As can be seen in Figure 23
the reference simulation exhibits the telltale undesired interference
pattern long after the boat has passed. This is not the case when
our boundary condition is employed, thus showing its effectiveness

Fig. 21. Illustration of the nonreflective boundary shape used for the
“Speedboat” simulation.
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Fig. 22. Kinetic energy graph for the “Speedboat” simulation.

in absorbing any waves leaving the simulation domain also for this
scenario.

8.4 Crazy Boat

This simulation (see Figure 24) is intended to show that complex
fluid interactions are possible when using our PML-based bound-
aries. Here a boat moves around in a lake making tight turns in a
flower-like pattern. As can be seen from the kinetic energy graph
in Figure 25 and even more clearly from the surface offset visu-
alizations in Figure 26 our boundaries once again do a good job
at removing reflections. Thus we conclude that our method works
well also for nontrivial, visual effects/oriented fluid simulations.

9. CONCLUSIONS

We have presented a novel PML-based wave absorbing bound-
ary condition for the free surface incompressible Euler and
Navier-Stokes equations in the presence of external forces. We have
also presented a novel algorithm for solving the resulting equations
in the boundary region based on the stable fluids approach. We have
shown that our boundary condition can efficiently absorb incoming
waves causing very little reflection in the process and that this ability
also extends to complex boundary shapes and nontrivial fluid-solid
interactions. Furthermore we have shown that our method provides
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Fig. 23. Water surface offset visualization of the “Speedboat” simulation.
The first three images (top row) show the reference simulation after 0.8, 2.5,
and 7.8 seconds, respectively. The three images on the second row show the
same simulation with a PML wave absorbing layer present.

Fig. 24. A rendering depicting the Crazy Boat scenario at times 0.4, 2.1,
and 5.4 seconds into the simulation.

significantly better results than both explicit and implicit damp-
ening, sometimes requiring boundary widths of only a couple of
voxels in order to be effective (see Figure 10). In order to solve
our boundary equations in a fast and stable manner we have had to
make a number of approximations. However, our results show that
in spite of this our method performs very well as a nonreflecting
boundary. Our results also show that the transition from the regu-
lar simulation domain to the boundary region needs to be smooth.
However, the exact shape of the transfer function has proven to be of
lesser importance; all the functions tested performed well with the
exception of a step function. We have also shown that our special-
ized time integration scheme for the dampened self-advection term
results in a stability condition that is not dependant on the amount
of dampening applied, thus making our method fast even for very
aggressive boundaries. Finally we have shown that the computa-
tional cost associated with our boundaries is fairly low, typically
1.75 times that of the undampened reference simulation. This cost,
though not insignificant, has still proven smaller than the cost of
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Fig. 25. Kinetic energy graph from the “Crazy Boat” simulation.

Fig. 26. Surface offset visualizations from the “Crazy Boat” simulation at
time 0.1, 0.8, and 2.8 seconds, respectively. The top three images show the
reference simulation and the bottom three show the same simulation using
our PML-based boundaries.

achieving equivalent results using explicit and implicit dampening
as is evident in Section 8.1.6. It should be noted that the dampening
regions surrounding the simulation domain behave in an unphysi-
cal manner, which can be surmised from, for example Figures 16,
17 and 26. This is to be expected since these regions represent a
wave absorbing medium and not actual fluid. From a visual effects
perspective it is thus prudent that these regions are removed from
the final rendering of the simulation using for example Constructive
Solid Geometry (CSG) operations.

We note that there are several areas in which our method can be
improved. First of all the algorithm described in Section 6, though
based on the stable fluids approach, is not unconditionally stable.
Due to our explicit integration of the self-advection term a CFL
stability condition must be considered. An unconditionally stable
method for solving this term in the boundary region would poten-
tially allow for faster stable integration and thus even faster compu-
tations. We have also observed a tendency for the q0,β variables not
to return completely to zero when the fluid returns to a stationary
state, thus resulting in a small net flux into or out of the boundary
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region. For all our tests this effect has been too small to be seen
by the naked eye, however, it is an indication that our integration
scheme for these variables can be further improved. Another poten-
tial area for improvement is the integration of the viscosity term.
Though our tests in Section 8.2 indicate that our boundaries work
well also for viscous fluids an unconditionally stable method for
solving Eq. (50) without approximations could potentially provide
even better results. It is also important to note that we have assumed
that all forces in the boundary region are conservative. In practice
this works well since the only force we need to incorporate every-
where by necessity is the force of gravity. This is further helped
by the fact that our boundaries do not need to be very wide to be
effective. If more general force interactions are desired we expect
that arbitrary external forces can be integrated into our method by
splitting Eq. (10) as is. However, this will add additional complex-
ity to the derivation in Section 4 and the algorithm in Section 6.
Thus we consider arbitrary external forces in the boundary region
to be beyond the scope of this article. In this article we also do not
consider the case of a mean-flow in the boundary domain. However,
we believe that the method described in Hu et al. [2008] for this
scenario can be applied to our work as well. Finally we wish to
note that though our boundary condition is PML based the resulting
equations are not formally perfectly matched to the Navier-Stokes
equations, primarily due to the splitting approach used to transform
Eq. (13) back to its spatial representation. Thus to be accurate our
boundary condition should be considered “well matched" to the
Navier-Stokes equations.

The aforesaid limitations allow for further improvement of our
method. However, we are still able to efficiently realize boundaries
that are practically reflection free. Though our boundaries are rather
involved, much of the complexity can be hidden from the end user.
Only two parameters are necessary during deployment: desired re-
flection (in percent) and desired boundary width. As a result we
believe that our method can be deployed in an intuitive and user-
friendly way. We also strongly believe that this article and the work
it presents will provide the visual effects community with a new and
highly useful tool in the struggle for better and ever more realistic
visual effects.
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Out-of-core and compressed level set methods. ACM Trans. Graph. 26, 4,
16.

OSHER, S. AND FEDKIW, R. 2002. Level Set Methods and Dynamic Im-
plicit Surfaces. Springer, Berlin.
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