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VDB: High-Resolution Sparse Volumes with Dynamic Topology
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We have developed a novel hierarchical data structure for the efficient rep-
resentation of sparse, time-varying volumetric data discretized on a 3D
grid. Our “VDB”, so named because it is a Volumetric, Dynamic grid that
shares several characteristics with B+trees, exploits spatial coherency of
time-varying data to separately and compactly encode data values and grid
topology. VDB models a virtually infinite 3D index space that allows for
cache-coherent and fast data access into sparse volumes of high resolution.
It imposes no topology restrictions on the sparsity of the volumetric data,
and it supports fast (average O(1)) random access patterns when the data
are inserted, retrieved, or deleted. This is in contrast to most existing sparse
volumetric data structures, which assume either static or manifold topology
and require specific data access patterns to compensate for slow random
access. Since the VDB data structure is fundamentally hierarchical, it also
facilitates adaptive grid sampling, and the inherent acceleration structure
leads to fast algorithms that are well-suited for simulations. As such, VDB
has proven useful for several applications that call for large, sparse, ani-
mated volumes, for example, level set dynamics and cloud modeling. In
this article, we showcase some of these algorithms and compare VDB with
existing, state-of-the-art data structures.
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1. INTRODUCTION

Volumetric data is essential to numerous important applications
in computer graphics, medical imaging, and VFX production,
including volume rendering, fluid simulation, fracture simulation,
modeling with implicit surfaces, and level set propagation. In most
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cases volumetric data is represented on spatially uniform, regular
3D grids, in part because such representations are simple and
convenient. Moreover, most volumetric algorithms and numerical
schemes have a strong preference for uniform sampling. Discretiza-
tion of differential operators, interpolation, convolution kernels, and
other such techniques can only be generalized to nonuniform grids
with difficulty. This is particularly true for accurate finite-difference
discretization of hyperbolic and parabolic partial differential equa-
tions governing time-dependent level sets and fluid dynamics. Such
numerical simulations are commonly used in VFX where simplicity
is a virtue, and they form the underlying motivation for most of the
applications presented in this article. However, the fact remains that
some volumetric applications, such as volumetric modeling and
ray marching, benefit from sampling at varying resolution, so it is
desirable to employ a data structure that supports both uniform and
hierarchical sampling. Additionally, many volumetric algorithms
like Computational Solid Geometry (CSG) and flood-filling benefit
significantly from a hierarchical data representation.

Although dense regular grids are convenient for several reasons,
they suffer at least one major shortcoming: their memory footprint
grows in proportion to the volume of the embedding space. Even
moderately sized dense, regular grids can impose memory bottle-
necks if multiple instances are required or if the 3D data is animated
and the grid domain dynamically changes, both of which are typical
for simulations. Since most volumetric applications used in VFX
production do not require data to be uniformly sampled everywhere
in a dense grid, the solution is clearly to employ a sparse volumet-
ric data structure. Such a sparse volume should ideally have the
advantage that the memory footprint scales only with the number
of voxels that contain meaningful sample values, and not with the
volume of the dense embedding space. While numerous sparse 3D
data structures have been proposed, most are designed explicitly
for adaptive sampling, have slow or restrictive data access, do not
scale to extreme resolution, or cannot easily handle numerical sim-
ulations with dynamic topology1. A few sparse data structures have
been developed specifically for level sets and fluid simulation, but as
will be explained later, they impose restrictions on the topology and
access patterns of the data and as such cannot easily be generalized
to other volumetric applications.

The VDB data structure is memory efficient, supports simulation
of time-varying data, is capable of encoding arbitrary topology, and
facilitates both uniform and adaptive sampling, while permitting
fast and unrestricted data access. While we do not claim VDB to be
a “silver bullet”, we will show that it offers many advantages over
existing dynamic data structures. In fact, VDB has already found
use in several movie productions, for example, Puss in Boots [Miller
et al. 2012] and Rise of the Guardians, where it was instrumental
for the creation of high-resolution animated clouds, see Figure 1.

As will be discussed in more detail in the next section, the hier-
archical structure of VDB may at first glance seem similar to other
data structures, but these similarities are superficial for at least two
reasons: either the existing data structures are not well-suited for

1Throughout this article “topology” is used to denote both the hierarchical
layout of a data structure and the spatial layout of voxels.
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Fig. 1. Top: Shot from the animated feature Puss in Boots, showing high-resolution animated clouds generated using VDB [Miller et al. 2012]. Left: The
clouds are initially modelled as polygonal surfaces, then scan-converted into narrow-band level sets, after which procedural noise is applied to create the
puffy volumetric look. Right: The final animated sparse volumes typically have bounding voxel resolutions of 15, 000 × 900 × 500 and are rendered using a
proprietary renderer that exploits VDB’s hierarchical tree structure. Images are courtesy of DreamWorks Animation.

time-varying simulations with dynamic topology, or they do not
lend themselves to the implementation of the class of efficient algo-
rithms that constitute an integral part of what we collectively denote
VDB. In other words, VDB should be evaluated against the relevant
target applications of dynamic sparse volumes and simulations.

1.1 Previous Work

Considering the importance of sparse data structures in computer
graphics, it is no surprise that there is a large body of prior work,
too large to be fully covered here. We limit our discussion to data
structures for volumes without time-varying topology and those for
compact representations of narrow-band level sets often intended
for fluid dynamics and other types of simulations. While the latter
is the main focus of this article, the former is still relevant, since
VDB can also be used as a generic, compact spatial data structure.

As a prelude we elaborate on the distinction between these two
categories. Data structures for dynamics must allow for both the grid
values (e.g., simulation data) and topology (e.g., sparsity of values),
to vary over time, and this imposes specific algorithmic challenges.
For instance, to support simulations that employ numerical finite
differencing and explicit time integration, fast sequential stencil it-
erators, uniform sampling, and temporal value buffers are needed.
In contrast, static data structures are typically optimized for adaptive
sampling and random access. Likewise, simulations often impose

restrictions on the dynamic grid topology (e.g., that they are closed,
manifold surfaces) and require efficient algorithms for topological
operations like dilation, inside/outside flood-filling, and dynamic re-
building of narrow-band level sets. In contrast, static data structures
generally support arbitrary but static grid topology. As such, exist-
ing static data structures are not readily applicable to a large class of
challenging numerical simulations, nor can current sparse dynamic
data structures be used in volumetric applications that require effi-
cient random access, nonrestricted topology, or adaptive sampling.
In essence, this dichotomy has motivated the current work.

Octrees have an especially long history in the context of render-
ing, modeling, and mesh extraction. To mention just a few, Veenstra
and Ahuja [1988] proposed a fast line-drawing algorithm for objects
represented by octrees, Stolte and Kaufman [1998], and Frisken
and Perry [2002] described several optimizations for tree traver-
sals, Frisken et al. [2000] used octrees to encode adaptive distance
fields for modeling, Ju et al. [2002] used octrees for adaptive mesh-
ing by means of dual contouring, and Ohtake et al. [2003] devel-
oped multilevel-partition-of-unity based on octrees. Sparse block-
partitioning of grids, sometimes referred to as bricking or tiling,
has also been successfully applied to rendering. Renderman uses
a so-called brickmap [Christensen and Batali 2004] to store global
illumination data, Lefebvre et al. [2005] employed an N 3-tree for
interactive texturing on the GPU, and Crassin et al. [2009] used a
similar tree for view-dependent out-of-core volume rendering. Of
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these, the latter two seem to be most closely related to our work.
However, we stress that to the best of our knowledge none of these
data structures has successfully been applied to simulations or an-
imated volumes. To quote from the conclusion of Crassin et al.
[2009]: “Currently, animation is a big problem for volume data. In
the future, we would like to investigate possible solutions.”

The main application that initially drove the development of
VDB was high-resolution sparse level sets [Osher and Fedkiw
2002]. These are time-dependent, narrow-band signed distance
fields used to represent and deform complex implicit geometry,
and they have found applications in fields like geometric modeling
and free-surface fluid simulations. In recent years, a number of
compact level set data structures have been proposed, including
height-balanced octrees [Strain 1999; Min 2004; Losasso et al.
2004, 2005], one-level blocking or tiling [Bridson 2003; Lefohn
et al. 2003], individual voxels stored in hash tables [Eyiyurekli and
Breen 2011; Brun et al. 2012], Dynamic Tubular Grids (DT-Grid)
[Nielsen and Museth 2006] and Hierarchical Run-Length Encoding
(H-RLE) [Houston et al. 2006]. Of these, DT-Grid and H-RLE
are most relevant to the current work given the fact that they
solve a similar problem and have been shown to outperform
the others [Nielsen 2006]. However, they take a very different
(nonblocked and nonadaptive) approach, which imposes limitations
not shared by VDB. Specifically DT-Grid employs a 3D analog
of Compressed-Row-Storage (CRS), originally developed for
compact representations of sparse matrices. H-RLE generalizes
DT-Grid by replacing CRS with run-length encoding progressively
applied in each of the three Cartesian directions.

In closing we note that the work detailed in this article marks the
culmination of a long series of SIGGRAPH presentations on VFX
applications of novel sparse data structures that eventually evolved
into VDB. The related Dynamic Blocked Grid, DB-Grid, was in-
troduced in Museth et al. [2007] and applied in Museth and Clive
[2008] and Zafar et al. [2010]. Next, Museth [2009, 2011] described
the development of the much improved hierarchical DB+Grid, so
named because it conceptually combines DB-Grid with B+Trees.
DB+Grid was finally renamed VDB2, applied in production [Miller
et al. 2012], and open sourced during SIGGRAPH 2012 [OpenVDB
2012], more than half a year after this article was first submitted.
Thus, a few minor implementation details presented in this article
do not apply directly to OpenVDB.

1.2 Contributions and characteristics of VDB

VDB is a volumetric data structure and algorithms with the follow-
ing characteristics.

—Dynamic. Unlike most sparse volumetric data structures, VDB is
developed for both dynamic topology and dynamic values typical
of time-dependent numerical simulations and animated volumes.
This requires efficient implementation of sparse finite-difference
iterators, topological morphology, and rebuild algorithms, as well
as temporal value buffers for cache-coherent numerical integra-
tion schemes.

—Memory efficient. The dynamic and hierarchical allocation of
compact nodes leads to a memory-efficient sparse data structure
that allows for extreme grid resolution. To further reduce the
footprint on disk we present an efficient, topology-based com-
pression technique that can be combined with bit-quantization
and standard compression schemes.

2Note, this name is completely unrelated to the similarly-named unstructured
mesh data structure presented in Williams [1992].

—General topology. Unlike most existing dynamic data structures
for narrow-band level sets, VDB can effectively represent sparse
volume data with arbitrary dynamic topology. This implies that
in the context of regular structured grids VDB can be used as a
generic volumetric data structure, as opposed to merely support-
ing dynamic level set applications.

—Fast random and sequential data access. VDB supports fast
constant-time random data lookup, insertion, and deletion. It
also offers fast (constant-time) sequential stencil access iterators,
which are essential for efficient simulations employing finite-
difference schemes. Spatially coherent access patterns even have
an amortized computational complexity that is independent of
the depth of the underlying B+tree.

—Virtually infinite. VDB in concept models an unbounded grid
in the sense that the accessible coordinate space is only limited
by the bit-precision of the signed coordinates3. This support for
unrestricted, and potentially negative, grid coordinates is nontriv-
ial and especially desirable for grid applications with dynamic
topology.

—Efficient hierarchical algorithms. Our B+tree structure offers the
benefits of cache coherency, inherent bounding-volume acceler-
ation, and fast per-branch (versus per-voxel) operations. Addi-
tionally it lends itself well to standard optimization techniques
like blocking, SSE vectorization, and multithreading.

—Adaptive resolution. Unlike most existing narrow-band level set
data structures, VDB is hierarchical and can store values at any
level of the underlying tree structure. However, it is important
to note that these multilevel values by design do not overlap
in index space. Thus, VDB is different from multiresolution data
structures like brickmaps or mipmaps that conceptually represent
the same values in index space at multiple levels of detail.

—Simplicity. Compared to some existing sparse data structures
VDB is relatively simple to both implement and apply. It is based
on well-known concepts like blocks and trees, and it supports ran-
dom access through an interface similar to regular dense volumes.
To demonstrate this point we shall disclose most implementation
details.

—Configurable. By design VDB is highly configurable in terms
of tree depth, branching factors, and node sizes. This allows the
grid to be tailored to specific applications in order to optimize
factors like memory footprint, cache utilization, and expected
access patterns.

—Out-of-core. VDB supports simple out-of-core streaming. More
specifically, we can reduce the in-memory footprint by storing
grid values out-of-core and only keeping the grid topology in
memory. Values are then loaded on demand, for example, during
block access while ray-tracing.

While many existing data structures certainly possess subsets of
these characteristics, to the best of our knowledge, VDB is the first
to embody all.

2. THE VDB DATA STRUCTURE

As can be surmised from the preceding list, VDB comprises
both a compact dynamic data structure and several accompanying

3Clearly the accessible coordinate space of any computer implementation
of a discrete grid is limited by the bit-precision of the voxels’ coordinates.
However, most implementations are unable to utilize the full coordinate
range due to their far more restrictive memory overhead. Notable exceptions
are VDB and DT-Grid.
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Fig. 2. 1D Illustration of a VDB with one RootNode (gray), two levels of InternalNodes (green and orange), and LeafNodes (blue). The RootNode is
sparse and resizable, whereas the other nodes are dense and have decreasing branching factors restricted to powers of two. The large horizontal arrays in each
node represent respectively the hash-map table mRootMap, and the direct access tables mInternalDAT and mLeafDAT. These tables encode pointers to child
nodes (green, orange, or blue), upper-level tile values (white/gray), or voxel values (red/gray). Gray is used to distinguish inactive values from active values
(white and red). The white nodes at the bottom show compressed LeafNodes where the inactive voxels (gray) have been removed, leaving only active voxels
(red). The small arrays above the direct access tables illustrate the compact bit masks, for example, mChildMask and mValueMask, that compactly encode
local topology.

algorithms. While they are clearly interdependent, we shall intro-
duce them separately.

2.1 Concepts and Analogies

One of the core ideas behind VDB is to dynamically arrange blocks
(or tiles) of a grid in a hierarchical data structure resembling a
B+tree. Blocks are leaf nodes at the same fixed depth of an acyclic,
connected graph with large but variable branching factors that are
restricted to powers of two; see Figure 2 and Figure 3 for 1D and
2D illustrations. This implies that the tree is height-balanced by
construction, but shallow and wide. This effectively increases the
domain while reducing the depth of the tree and consequently the
number of I/O operations required to traverse the tree from root node
to leaf node. In contrast, octrees are typically tall, due to the small
branching factor of two in each of the spatial dimensions. However,
similar to octrees or N-trees, VDB can also encode values in the
non-leaf nodes, serving as an adaptive multilevel grid. As such it
might be tempting to characterize VDB as merely a generalized
octree or N-tree. However, such a comparison is superficial, since
the real value of VDB is its unique implementation, described in
Section 3, which facilitates efficient algorithms for data access and
manipulation of dynamic data.

As hinted earlier, a better analogy to the VDB data structure is
the B+tree [Bayer and McCreight 1972] often used in file systems
and relational databases, for example, NTFS and Oracle. Our vari-
ant of the B+tree retains the favorable performance characteristics
that result from the use of large, variable branching factors, but the
volumetric application allowed us to exploit representational and
algorithmic optimizations. Whereas we encode grid values indexed
by their spatial coordinate in all nodes of the tree, a standard B+tree
encodes abstract records indexed by keys in a block-oriented storage
context at the leaf nodes only. In other words, VDB is a mutlilevel
data structure and does not employ keys in the sense of a tradi-
tional B+tree. Another distinction is that the leaves of a B+tree are
often linked to one another to allow for rapid sequential iteration.
As will be explained in Section 3, VDB adopts a more efficient
strategy that avoids maintenance of this linked list when nodes are

dynamically inserted or deleted. Finally, whereas B+trees employ
random lookup with logarithmic complexity, VDB offers constant-
time random access. Nevertheless, the VDB data structure may be
viewed as a particular optimization of B+trees, and we believe it is
the first in the context of sparse volumetric grids.

Another interesting comparison is to the design of memory hier-
archies in modern CPUs. Like VDB, they employ a fixed number
of cache levels of decreasing size and increasing random-access
performance, and only the topmost level, the main memory, can
be dynamically resized. We shall elaborate more on this analogy in
Section 3.2.

A data structure or algorithm is only as efficient and useful as
its software implementation permits. VDB is clearly no exception,
and many of its attractive features can exactly be ascribed to such
efficient implementations in terms of both memory footprint and
computational performance. Consequently we have chosen to in-
clude several details of our C++ implementation in the discussions
that follow. This should not only allow the reader to reproduce
VDB, but also serves to demonstrate how simple it is, considering
the complexity of the problems it addresses. We make extensive use
of C++ template metaprogramming and inlining, and consistently
avoid virtual functions. This turns out to be an important optimiza-
tion that, among other things, leads to computationally efficient ran-
dom access. More specifically, the tree node classes are recursively
templated on their child node types, rather than inheriting from a
common base class. The reason is that templated node configura-
tions are expanded inline at compile time, and consequently some
template functions have no extraneous runtime overhead. Another
advantage of this approach is that it allows us to easily customize
the tree depth and branching factors, but at compile time rather than
runtime. Other noteworthy implementation techniques are fast bit-
wise operations, compact bit-wise storage, type unions for memory
reuse, and straightforward implementation of threading and SIMD
operations. The fact that VDB lends itself to these techniques is an
important practical consideration. In what follows, we concentrate
on the implementation of 3D grids, though for the sake of clarity
most of our illustrations are 1D or 2D, and VDB can arguably be
implemented for any spatial dimensions.
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Fig. 3. Illustration of a narrow-band level set of a circle represented in, respectively, a 1D and 2D VDB. Top Left: The implicit signed distance, that is, level
set, of a circle is discretized on a uniform dense grid. Bottom: Tree structure of a 1D VDB representing a single y-row of the narrow-band level set. Top Right:
Illustration of the adaptive grid corresponding to a VDB representation of the 2D narrow-band level set. The tree structure of the 2D VDB is too big to be
shown. Voxels correspond to the smallest squares, and tiles to the larger squares. The small branching factors at each level of the tree are chosen to avoid visual
cluttering; in practice they are typically much larger.

2.2 Terminology

VDB in concept models an infinitely large 3D index space (x, y, z),
although in practice it is naturally limited by the bit-precision of
indices and the available memory. The data encoded into VDB con-
sist of a Value type, defined by means of templating, and the cor-
responding discrete indices, (x, y, z), specifying its spatial sample
location, that is, topology of the value within the tree structure. For
convenience we shall occasionally use the symbol w to collectively
denote one of the three Cartesian coordinate directions. We refer to
the smallest volume elements of index space as voxels, shaded red
in Figure 2. A single data value is associated with each voxel. Every
such voxel in VDB can exist in one of two discrete states, namely
active or inactive. The interpretation of this binary state is applica-
tion specific, but typically an active voxel is more “important” or
“interesting” than an inactive one. For example, in scalar density
grids, inactive voxels have a default background value (e.g., zero)
and active voxels have a value different from this default value.
For narrow-band level sets, all voxels inside the narrow band are
active, and all other voxels are inactive and have a constant nonzero
distance whose sign indicates inside versus outside topology, as in
Figure 3. VDB separately encodes voxel topology in a tree whose
root node covers all of index space and whose leaf nodes each cover
a fixed subset of index space. More precisely, topology is implicitly
encoded into bit masks, and values are explicitly stored in buffers

residing at any level of the tree. Areas of index space in which all
voxels have the same value can be represented with a single value
stored at the appropriate level of the tree, as in Figure 3. We shall
adopt the term tile value to denote these upper-level values. Like
voxels, tiles can be either active or inactive. The overall goal of
VDB is to consume only as much memory as is required to repre-
sent active voxels, while maintaining the flexibility and performance
characteristics of a typical dense volumetric data structure.

In the C++ code snippets that follow we use the following con-
ventions: Identifiers with leading caps, for example, LeafNode, are
either class, type, or template parameter names; those in camel case
with a leading “s”, for example, sSize, denote constant static data
members, and those in camel case with a leading “m”, for example,
mFlags, denote regular member variables. All lower case identi-
fiers, for example, x, denote nonmember variables.

2.3 Building Blocks

While VDB can be configured in many different ways, we shall
describe the components that are common to all configurations,
starting from the leaf node and ending with the root node, following
a discussion of a data structure fundamental to all nodes.

Direct access bit masks. A fundamental component of VDB
is the bit masks embedded in the various nodes of the tree structure.
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Fig. 4. High-resolution VDB created by converting polygonal model from How To Train Your Dragon to a narrow-band level set. The bounding resolution of
the 228 million active voxels is 7897 × 1504 × 5774 and the memory footprint of the VDB is 1GB, versus the 1

4 TB for a corresponding dense volume. This
VDB is configured with LeafNodes (blue) of size 83 and two levels of InternalNodes (green/orange) of size 163. The index extents of the various nodes
are shown as colored wireframes, and a polygonal mesh representation of the zero level set is shaded red. Images are courtesy of DreamWorks Animation.

They provide fast and compact direct access to a binary representa-
tion of the topology local to the node, and we are, to the best of our
knowledge, the first to employ them simultaneously for: (1) hierar-
chical topology encoding, (2) fast sequential iterators, (3) lossless
compression, (4) boolean operations, and (5) efficient implementa-
tions of algorithms like topology dilation. All of these operations
are essential for dynamic sparse data structures applied to fluids,
narrow-band level sets, and volumetric modeling. We will discuss
these four applications and the explicit deployment of bit masks in
more detail later.

Leaf nodes. These nodes (shaded blue in Figures 2, 3, and 4)
act as the lowest-level blocks of the grid and by construction all
reside at the same tree depth. They effectively tile index space into
nonoverlapping subdomains with 2Log2w voxels along each coor-
dinate axis, where Log2w = 1, 2, 3, . . . . A typical configuration
would be Log2w = 3, corresponding to an 8 × 8 × 8 block. We
restrict the leaf (and internal) node dimensions to powers of two, as
this allows for fast bit operations during tree traversals.

1template <class Value , int Log2X ,

2int Log2Y=Log2X , int Log2Z=Log2Y >

3class LeafNode {

4static const int sSize=1<<Log2X+Log2Y+Log2Z ,

5sLog2X=Log2X , sLog2Y=Log2Y , sLog2Z=Log2Z;

6union LeafData {

7streamoff offset;//out -of -core streaming

8Value* values;// temporal buffers

9} mLeafDAT;// direct access table

10BitMask <sSize > mValueMask;// active states

11[BitMask <sSize > mInsideMask ];// optional for LS

12uint64_t mFlags;//64 bit flags

13};

As can be seen in the preceding code, the LeafNode dimensions are
fixed at compile time, and the size of the node is readily computed
as 1"

∑
w sLog2w, where " denotes a bit-wise left shift. The

leaf nodes encode voxel data values into a Direct Access Table4,

4Throughout this article we use the term “direct access table” to denote an
array of elements that has a worst-case random access complexity of O(1).

12 bits1 20

x y z

node origin 

compressed

buffer
count

quantized

flags

20 20

Fig. 5. Compact 64-bit representation of mFlags encoding; buffer count
(2), compression (1), quantization (1), and leaf node origin (3 × 20).

mLeafDAT, and the active voxel topology into the direct access bit
mask mValueMask. It is important to note that whereas the bit mask
has a fixed size equal to that of the LeafNode, the size of the value
array, mLeafDAT.values, is dynamic for the following reasons.

First, for some applications the memory footprint of the
mLeafDATs can be significantly reduced by means of various com-
pression techniques. We support several different codecs including
ones that take advantage of the topology of active voxels, that is,
mValueMask, and the inside/outside topology of level sets, that
is, mInsideMask, as well as more traditional entropy-based and
bit-truncation schemes. The details can be found in Appendix A.
Second, to best facilitate numerical time integration, the LeafNode
can contain multiple value buffers, each storing voxels for a dif-
ferent time level. For example, a third-order accurate TVD-Runge-
Kutta scheme [Shu and Osher 1988] requires three temporal buffers.
Finally, the voxel values can also reside out-of-core, which is facil-
itated by the offset into a file stream. Note that this offset does
not incur additional memory overhead since it is encoded in a C++
union in the mLeafDAT.

The variable number and size of value buffers as well as other
information about the LeafNode is compactly encoded in the 64-bit
variable mFlags; see Figure 5. The first two bits encode the four
states: 0 buffers, that is, values are out-of-core, 1 buffer, that is, in-
core values with no support for temporal integration, 2 buffers, that
is, in-core values with support for first-and second-order temporal
integration or 3 buffers, that is, in-core values with support for third-
order temporal integration. The third bit is on if the block is com-
pressed, and the fourth bit is on if the leaf is bit-quantized. Finally,
the remaining 3x20 bits of mFlags are used to encode the global
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origin of the node in the virtual grid5. This turns out to be very con-
venient since global voxel coordinates can then be derived by com-
bining the local voxel topology encoded in mValueMask with the
global node origin frommFlags. Consequently,LeafNodes are self-
contained and need not reference their parent nodes, which reduces
memory footprints and simplifies derivation of voxel coordinates.

Internal nodes. As the name suggests, these nodes reside at
all intermediate levels of the tree between the root and leaf nodes,
and essentially define the depth and shape of the B+tree. This is
illustrated by the green and orange nodes in Figures 2, 3, and 4.

14template <class Value , class Child , int Log2X ,

15int Log2Y=Log2X , int Log2Z=Log2Y >

16class InternalNode {

17static const int sLog2X=Log2X+Child::sLog2X ,

18sLog2Y=Log2Y+Child::sLog2Y ,

19sLog2Z=Log2Z+Child::sLog2Z ,

20sSize=1<<Log2X+Log2Y+Log2Z;

21union InternalData {

22Child* child;// child node pointer

23Value value;//tile value

24} mInternalDAT[sSize];

25BitMask <sSize > mValueMask;// active states

26BitMask <sSize > mChildMask;//node topology

27int32_t mX , mY , mZ;// origin of node

28};

As can be seen, they share several implementation details with the
LeafNodes. The branching factors are configurable by means of
the template parameters, Log2w, restricting branching to powers
of two which facilitates efficient tree traversals. However, unlike
LeafNodes, InternalNodes encode both values and tree topol-
ogy, that is, pointers to other internal or leaf nodes. This is effi-
ciently implemented by a union structure in the direct access table
mInternalDAT. The corresponding topology is compactly encoded
in the bit mask mChildMask, and mValueMask is used to indicate
if a tile value is active or not. Note that since the branching factors,
Log2w, are fixed at compile time, so are the sizes of mInternalDAT,
mChildMask, and mValueMask. However, it is important to stress
that internal nodes at different tree levels are allowed to have dif-
ferent branching factors, thereby adding flexibility to the overall
shape of the tree; see Figure 2. This is nontrivial since the memory
footprint and computational performance can be affected by the tree
configurations, as will be discussed in Section 5.1.

Root node. This is the topmost node at which operations on
the tree commonly begin. We note that the InternalNode can also
serve as a root node, however, with significant limitations. Since
all nodes introduced thus far have templated branching factors,
the overall domain of the corresponding grid is effectively fixed
at compile time. For extreme resolutions this will require large
branching factors, which in turn can incur memory overheads due
to the dense direct access tables, mInternalDAT (more on this
in Section 2.4). Hence, to achieve conceptually unbounded grid
domains, with small memory footprints, a sparse dynamic root node

5To best utilize the 20 bits the origin is divided by the LeafNode size, that is,
X>>=Log2Xwhere X denotes the origin of the node along the x-axis and >> is
a bit-wise right shift. If the node is 83, that is, Log2X=3, this allows for grid
domains exceeding eight million grid points in each coordinate direction,
which has proven more than enough for all our applications. However, in
OpenVDB this restriction is overcome by encoding the origin at full 32
bit-precision.

is required. Such a RootNode is illustrated in 1D in Figure 2, gray
node, and the structure is as follows.

29template <class Value , class Child >

30class RootNode {

31struct RootData {

32Child* node;//=NULL if tile

33pair <Value , bool > tile;// value and state

34};

35hash_map <RootKey ,RootData ,HashFunc > mRootMap;

36mutable Registry <Accessor > mAccessors;

37Value mBackground;// default background value

38};

All configurations of a VDB have at most one RootNode which,
unlike all the other tree nodes, is sparse and can be dynamically
resized. This is facilitated by a hash-map table that encodes child
pointers or tile values. If a table entry represents a tile value (i.e.,
child=NULL), a boolean indicates the state of the tile (i.e., active or
inactive). It is important to note that by design mRootMap typically
contains very few entries due to the huge index domains represented
by the tile or child nodes, for example, 40963. In fact in Section 5
we will show that a red-black tree data structure like std::map
can perform better than a sophisticated hash map that requires the
computation of more expensive hash keys. Regardless, random ac-
cess into a dynamic sparse data structure like a map or hash table
is generally slower than a lookup into the fixed dense direct access
table mInternalDAT. In other words it would seem the proposed
RootNode suffers a major disadvantage when compared to the fast
InternalNode. However, there is a surprisingly simple and very
efficient solution to this problem of slow access into the mRootMap.
The RootNode contains a registry of Accessors, which can sig-
nificantly improve spatially coherent grid access by reusing cached
node pointers from a previous access to perform bottom-up, ver-
sus top-down, tree traversals. This inverted tree traversal effectively
amortizes the cost of full traversals initiated at the RootNode level.
While we will leave the implementation details for Section 3.2, it
suffices to stress that a majority of practical access patterns, even
seemingly random ones, typically exhibit some type of spatial co-
herence. Finally, mBackground is the value that is returned when
accessing any location in space that does not resolve to either a tile
or a voxel within a child node.

2.4 Putting it All Together

No single configuration of any spatial data structure can claim to
handle all applications equally well, and VDB is no exception, so it
is deliberately designed for customization. Different combinations
of the nodes and their parameters can alter the tree depth and branch-
ing factors which in turn impacts characteristics like available grid
resolution, adaptivity, access performance, memory footprint, and
even hardware efficiency. We will discuss some general guidelines
for such configurations, and then present a configuration that bal-
ances most of the aformentioned factors, and that has proven useful
for all of the applications presented in Section 5. As a prelude, let
us consider some extreme configurations that will serve to motivate
the balanced configuration of VDB, namely tiled grids, hash maps,
and N-trees.

Tiled grids. Suppose we decided to configure the grid as simply
oneInternalNode connected directly to multipleLeafNodes. This
is conceptually the idea behind most existing tiled grids, like the pro-
prietary DB-Grid [Museth et al. 2007; Museth and Clive 2008] and
the open-source SparseField [Field3D 2009], except they typically
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employ a nonstatic direct access table at the top-level. Since the
path from root to leaf is extremely short, and all nodes employ fast
direct access tables, we expect efficient random access performance.
However, this fast access comes at the cost of limited grid resolu-
tions due to significant memory overheads. This follows from the
fact that the available resolution of the grid is given by the product
of the branching factors at each level of the tree. Hence, if high grid
resolution is desired the branching factors of the InternalNode
(currently the top node) and the multiple LeafNodes need to be
large. Conversely, it is generally desirable to keep the size of the
LeafNodes relatively small for two reasons: cache performance and
memory overhead from partially filled LeafNodes with few active
voxels. This typically implies that the branching factors of the top
node need to be several orders of magnitude larger than those of the
LeafNodes, which in turn introduces a significant memory over-
head from the top-level dense direct access table; see Section 5. In
order to achieve a modest grid resolution of 81923 with a LeafNode
size of 83 the footprint of the top mInternalDAT is a massive 8GB,
even before voxel values are inserted. Finally, since this particular
configuration essentially corresponds to a flat tree, it has no sup-
port for efficiently storing contiguous regions of index space with
constant (upper-level) tile values. Equally important, it lacks an ac-
celeration structure, which is important for hierarchical algorithms.

Hash maps. At this point the attentive reader might specu-
late that an efficient solution to the aforementioned memory issue
would simply be to replace the dense InternalNode with the
sparse RootNode that employs a hash-map table. However, careful
consideration reveals several performance issues, starting with the
fact that the Accessors registered in the RootNode aren’t very
efficient with this simple configuration. To understand why let’s
recap the idea behind the Accessor; to amortize the overhead of
slow lookup into the mRootTable by means of reusing cached child
nodes. Now, as emphasized before it is typically advantageous to use
small LeafNodeswhen representing sparse volumes. Consequently
the child nodes of the RootNode would cover very small index do-
mains, which in turn implies cache misses in the Accessor. In
other words, the complexity of random access for this configuration
is dominated by the bottleneck of the slower mRootMap. Further-
more, since the LeafNodes are small the mRootMap will typically
contain many entries which can further impair lookup performance
due to collisions of hash keys and logarithmic search complexity.
For narrow-band level sets this situation is even worse since the
mRootMap also has to contain all the tile values that represent the
constant interior of the interface; see large green tiles in Figure 3.
While good hash functions can minimize collisions they tend to
be more computationally expensive than the (perfect) keys into a
direct access table, and the resulting hash key will arrange the in-
serted data randomly. Consequently even spatially coherent access
to LeafNodes can lead to random memory access which, generally,
leads to poor cache performance for simulations. Finally, the pro-
posed tree configuration is clearly flat and therefore lacks support
for fast hierarchical algorithms as well as adaptive sampling.

For the sake of completeness we note that one could also con-
sider a non-hierarchical configuration where the RootNode stores
individual active voxels directly in a single hash table. This is con-
ceptually the approach taken by Eyiyurekli and Breen [2011], and
Brun et al. [2012]. While offering a simple and sparse data structure
it suffers several performance issues. The first problem is of course
that random access to voxels always requires lookup into a hash
table, which is slower than lookup into a direct access table. Even
worse, since there are typically millions of active voxels, hash-key
collisions, which lead to slow access, are difficult, if not impossible,

to avoid. Finally, as stressed earlier good hash functions introduce
randomness which impairs cache performance, even during sequen-
tial access.

N-trees. Now consider another extreme case with a fixed branch-
ing factor at all levels, for instance Log2X=Log2Y=Log2Z=1, cor-
responding to a height-balanced octree. With an extremely small
branching factor of two in each coordinate direction, this is clearly
optimal for adaptive grid sampling. However, it suffers slow ran-
dom access; see Section 5. This is a consequence of the fact that for
a given tree depth D, the corresponding resolution is only 2D . For
a modest grid resolution of 81923, the octree would have to be at
least 13 levels deep. This situation can be improved by increasing
the branching factor, so as to resemble an N-tree, originally pro-
posed for static volumes [Lefebvre et al. 2005; Crassin et al. 2009].
However, as mentioned before, large nodes can impair cache per-
formance and inflate the memory footprint. This is especially true
for large LeafNodes, which can result in an unfavorable ratio of
active to inactive voxels when encoding sparse data; see Section 5.
Additionally, a large constant branching factor can lead to poor grid
adaptivity since the change of resolution between consecutive levels
of the tree is too drastic. Finally, since the depth of VDB is fixed
by design, a fixed branching factor would result in a fixed grid res-
olution, which is generally undesirable when dealing with dynamic
volumes.

We summarize observations to consider when configuring a
VDB:

—Resolution scales with branching factors and trees depth;
—Random access is generally faster for shorter trees;
—Adaptivity favors small branching factors and tall trees;
—Memory scales with the number and size of nodes;
—Cache reuse is improved with smaller nodes and deep trees.

Given these seemingly conflicting guidelines it would seem that op-
timal performance can be achieved only if the tree configuration is
customized for every grid application. However, we have identified
a class of trees that balance most of these factors, at least for the
level set and sparse volume applications presented in this article.
This configuration can be regarded as a hybrid between the best fea-
tures of the extreme cases discussed before: a flat tiled grid, a hash
map, and a regular N-tree structure. It is a short and wide height-
balanced B+tree with small leaf nodes, typically three or four levels
deep and with increasing branching factors from the bottom up. An
example is a tree with a dynamic RootNode, followed by two levels
of InternalNodes with static branchings of respectively 323 and
163, followed by LeafNodes of size 83, that is, each child node of
the RootNode spans an index domain of 4, 0963. Figure 2 shows a
1D example of a three-level VDB with a similar profile. Alterna-
tively the RootNode can be replaced by an InternalNode with a
branching factor of 643, which results in a VDB with a fixed avail-
able resolution of 262, 1443, but a worst-case constant-time random
access. We shall study the performance of these configurations, and
many others, in Section 5, and will demonstrate that they offer fast
random access and efficient sequential access, support extreme res-
olutions, are hierarchical and adaptive, and have a relatively small
memory overhead and good cache performance.

A curious but useful variant is a VDB that only encodes grid
topology, by means of the bit masks, but stores no data values.
This VDB is very compact and can be used for topology algorithms
on the voxels of a regular VDB, for example, dilation, erosion, or
narrow-band rebuild, or for applications that only require binary
representations of index space, that is, voxelized masks.
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We have also experimented with trees that can dynamically grow
vertically, as opposed to horizontally, but with disappointing results.
We found that such configurations complicate efficient implementa-
tions of data access patterns like insertion and deletion, and prevent
us from optimizing data access when the depth and branching fac-
tors are known at compile time. Finally, a fixed depth leads to
constant-time random access. These considerations should become
clearer when we discuss implementation details in the following
section.

3. VDB ACCESS ALGORITHMS

So far we have focused exclusively on the VDB data structure, which
constitutes only half of our contribution, and arguably the simpler
half. The other half concerns a toolbox of efficient algorithms and
optimization tricks to navigate and operate on this dynamic data
structure. We shall focus on tree access algorithms in this section
and discuss more application-specific techniques in the next section.
In other words, it is the combination of the data structure presented
in Section 2 and the algorithms to be discussed in Section 3 and
Section 4 that we collectively refer to as VDB.

There are three general access patterns for a spatial data structure:
random, sequential, and stencil. We will next describe how each of
these is efficciently implemented for VDB. Subsequently, we will
present various other algorithms that are important for dynamic
volumes such as level sets.

3.1 Random Access

The most fundamental, but also the most challenging, pattern is
random access to arbitrary voxels. What distinguishes this pattern is
the fact that, in the worst case, each voxel access requires a complete
top-down traversal of the tree, starting from the RootNode and
possibly terminating at a LeafNode. In practice, though, random
access can be significantly improved by inverting the traversal order,
a topic we shall postpone until Section 3.2. As such it is easier to
use a contrapositive definition of random access, namely to say it
is any access that is neither sequential nor stencil based. The latter
two are easily defined as access with a fixed pattern, defined either
from the underlying data layout in memory or some predefined
neighborhood stencil.

Random lookup is the most common type of random access and
shall serve as a prelude to all the others. We start by identifying
the fundamental operations required to effectively traverse the tree
structure starting from the RootNode. Obviously these operations
depend on the actual implementation of the mRootMap, so let’s start
with the simple std::map. To access the voxel at index coordinates
(x,y,z), we begin by computing the following signed rootKey

39int rootKey [3] = {x&~((1<< Child:: sLog2X)-1),

40y&~((1<< Child:: sLog2Y)-1),

41z&~((1<< Child:: sLog2Z ) -1)};

where & and ~ denote, respectively, bit-wise AND and NOT oper-
ations. At compile time this reduces to just three hardware AND
instructions, which mask out the lower bits corresponding to the
index space of the associated child nodes. The resulting values
are the coordinates of the origin of the child node that contains
(x,y,z), and hash collisions are thus avoided. This perfect key
is then used to perform a lookup into mRootMap which stores
the RootData (line 31 of the code) in lexicographic order of the
three rootKey components. If no entry is found, the background
value (mBackground) is returned, and if a tile value is found, that
upper-level value is returned. In either case the traversal terminates.

However, if a child node is found the traversal continues until a tile
value is encountered or a LeafNode is reached. The only modifi-
cation needed to replace the std::map with a hash map, like the
fast google::dense hash map [sparsehash 2009], is a good hash
function that generates uniformly distributed random numbers. To
this end we combine the perfect rootKey given earlier with the
(imperfect) hash function proposed in Teschner et al. [2003].

42unsigned int rootHash = ( (1<<Log2N)-1 ) &

43(rootKey [0]*73856093 ^

44rootKey [1]*19349663 ^

45rootKey [2]*83492791);

Here the three constants are large prime numbers, ^ is the binary
XOR operator, & is the bit-wise AND operator, << is the bit-wise
left shift operator, and Log2N is a static constant estimating the
base two logarithm of the size of mRootMap. Note that we have
improved the original hash function in Teschner et al. [2003] by
replacing an expensive modulus operation with a faster bit-wise
AND operation. We have observed three important benefits from
this seemingly small change: the computational performance is im-
proved by more than 2×, the hash function works correctly with
negative coordinates, and it is less prone to 32-bit integer overflow.
Using the standard Pearson’s chi-squared test we have verified that
the modified hash function preserves its uniformity over signed
coordinate domains. While it is well-known that hash maps asymp-
totically have better time complexity than a simple std::map it
should be clear that the rootHash is more expensive to compute
than the corresponding rootKey. Combine this with the fact that
in practice the mRootMap is expected to be very small, and it is not
obvious which implementation is faster, a question we shall address
in Section 5.

When an InternalNode is encountered (either at the top or
internal levels), the following direct access offset is derived from
the global grid coordinates

46unsigned int internalOffset =

47(((x&(1<<sLog2X)-1)>>Child:: sLog2X)<<Log2YZ)+

48(((y&(1<<sLog2Y)-1)>>Child:: sLog2Y)<<Log2Z) +

49((z&(1<<sLog2Z)-1)>>Child:: sLog2Z);

where Log2YZ=Log2Y+Log2Z. At compile time this reduces to
only three bit-wise AND operations, five bit shifts, and two ad-
ditions. Next, if bit internalOffset of mChildMask is off, then
(x,y,z) lies within a constant tile, so the tile value is returned from
mInternalDAT and traversal terminates. Otherwise, the child node
is extracted from mInternalDAT and traversal continues until either
a zero bit is encountered in the mChildMask of an InternalNode
or a LeafNode is reached. The corresponding direct access offset
for a LeafNode is even faster to compute.

50unsigned int leafOffset =

51((x&(1<<sLog2X)-1)<<Log2Y+Log2Z) +

52((y&(1<<sLog2Y)-1)<<Log2Z )+(z&(1<<sLog2Z ) -1);

This is because it reduces to just three bit-wise AND operations,
two bit-wise left shifts, and two additions.

Let us make a few important observations. First, with the excep-
tion of the three multiplications in the hash function, all of these
computations are performed with single-instruction bit operations,
as opposed to much slower arithmetic operations like division, mul-
tiplication, and modulus—a simple consequence of the fact that all
branching factors by design are powers of two. Second, all keys
and offsets are computed from the same global grid coordinates
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Fig. 6. Illustration of the bit masking in lines 46–52 of the code. The
example on the left (Block 0) shows how the bit operations work for negative
indices, by virtue of the two’s complement of binary numbers. In this number
system the bit representation of a negative value (e.g., −5) is derived by
flipping the bits of the corresponding absolute value (i.e., 5) and adding one.
Thus, after bit masking the indices −5 and 5, the unsigned offsets into block
0 and 1 are respectively 3 and 5.

(x,y,z), that is, they are level independent and nonrecursive. This
is a consequence of the fact that tree depth and branching factors
are known at compile time. Finally, all these bit-wise computations
work even for negative values of (x,y,z). This follows from the
facts that bit-wise AND, unlike bit-wise shifts, is well-defined for
signed integers, and from the two’s complement representation of
signed integers in modern hardware (see Figure 6). Inspecting lines
39–52 in the code, it is evident that only bit-wise AND is applied
directly on (x,y,z), and that all other bit-wise shift operations
involve unsigned integers.

Since VDB by construction is height-balanced with a runtime
fixed depth, every path from the RootNode to a LeafNode is equally
long and we conclude that every random lookup of leaf values
involves the same worst-case time complexity. Random access to
tile values stored at shallower depths of the tree is obviously faster
since the traversal terminates early, but it is still bounded by the
computational complexity of access to voxel values stored in leaf
nodes. Given that both InternalNodes and LeafNodes employ
direct access tables, with O(1) worst-case random access time, it
should be clear that the overall complexity of VDB is given by
that of the RootNode. If an InternalNode is used at the top level
the worst-case random lookup complexity of VDB is O(1). If, on
the other hand, the RootNode is implemented with a std::map the
complexity is log(n), where n is the number of entries in mRootMap,
which as mentioned earlier is expected to be very low due to the size
of the child nodes. However, if RootNode uses an optimized hash
map with a good hash function the average complexity becomes
O(1), whereas the worst-case time is O(n). Only perfect hashing
will allow for constant-time lookup in the worst case, which is not
theoretically possible for a truly unbounded domain, that is, infinite
number of hash keys. However, in practice we expect few entries
with sufficiently uniform hash keys, and as such we conclude that
even with a RootNode that supports unbounded domains, random
lookup of VDB has on average constant-time complexity.

Random insert is typically used when initializing grids, but can
also play an essential role in the context of dynamic data, like
rebuilding a narrow band of a level set. Traversal is performed using
the fast bit operations (lines 39–52 in the code), but now a child
node is allocated if the corresponding bit is off in a mChildMask.
Traversal terminates at a (possibly newly constructed) LeafNode,
with the voxel value set in the desired temporal buffer and the
corresponding bit set in mValueMask. Because nodes below the
RootNode are allocated only on insert, the memory footprint for
sparse volumetric data is low. Although this dynamic allocation
of nodes implies that random insert can be slower than random

lookup, the overhead is typically amortized over multiple coherent
insert operations, and on average it has constant-time complexity.

Random deletion is another example of an operation that
requires efficiency when dealing with dynamic data. The traversal
is implemented similarly to random insert, except now bits are
unset in mChildMask and mValueMask and nodes are pruned
away if they contain no child nodes or active voxels. Pruning,
which is performed bottom-up, can be implemented efficiently
by simultaneously checking multiple bits in mChildMask and
mValueMask, for example, simultaneously checking 64 entries by
means of 64-bit arithmetic.

In conclusion, VDB supports constant-time random access op-
erations like lookup, insertion, and deletion, and this is on average
independent of the topology or resolution of the underlying dataset.
In comparison, neither DT-Grid nor H-RLE support any type of
random insertion or deletion, and random lookup has logarithmic
time complexity in the local topology of the dataset.

3.2 Improving Random Access

In practice, virtually all grid operations have some degree of spatial
coherence, so grids are rarely accessed in a truly random pattern. In
fact, regardless of the underlying data structure, truly uniform ran-
dom access should always be avoided, since it represents the worst-
case scenario in terms of memory reuse. For truly random access
the computational bottleneck is typically the memory subsystem of
the CPU, rather than the data structure itself. The extreme cases of
spatial coherence are stencil or sequential access which are studied
separately shortly. However, even for nonsequential and non-stencil
access, there is very often some exploitable spatial coherence.

The core idea is to improve random access by virtue of inverted
tree traversal, which in turn is facilitated by retracing cached ac-
cess patterns. Rather than initialize each random access from the
RootNode, we cache the sequence of nodes visited during a pre-
vious access operation, allowing subsequent access operations to
traverse the tree from the bottom up until a common parent node
is reached. On average, the greater the spatial clustering of random
accesses, the shorter the traversal path and hence the greater the
speedup. In particular, the slower access time of the RootNode can
be amortized if its child nodes are large enough to introduce average
spatial coherence for all practical access patterns.

This technique essentially resembles the caching mechanism in
memory hierarchies of modern CPUs that employ multiple cache
levels. In this analogy the RootNode corresponds to main memory,
InternalNodes to L3/L2 cache, and LeafNodes to L1 cache. Just
as access to data in L1 cache is much faster than any of the other
memory levels, access to values in cached LeafNodes is faster
than in any other tree level. Further, even the relative sizes of the
cache levels in current CPUs resemble the node sizes in the bal-
anced VDB tree structure proposed in Section 2.4. The depth of the
memory hierarchy in CPUs is fixed, typically consisting of a large,
relatively slow, and dynamically resizable portion of main mem-
ory (RAM) and three levels of progressively smaller, faster, and
fixed sized cache levels, exactly mimicking the configuration of
VDB illustrated in Figure 2. This complexity of the CPU’s physical
memory hierarchy is hidden to the operating system by employing
a nonhierarchical Virtual Address Space (VAS). To accelerate the
mapping from VAS to pages of physical memory in the various data
caches, the CPU employs a Translation Look-aside Buffer (TLB)
that caches previous lookups from virtual to physical memory. To
complete this CPU metaphor for VDB we can think of grid coor-
dinates (x,y,z) as a virtual memory address, and pointers to tree
nodes as addresses of physical memory pages containing (x,y,z).
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Thus, to accelerate random access into a VDB we are basically
seeking the analogy of a TLB for our tree structure.

While caching as outlined earlier might seem straightforward, it
is actually not trivial to implement efficiently. The problem is that
the random access operations detailed in Section 3.1 are already fast,
so there is little room for computational overhead. This precludes
the use of a standard hash table to store the cached tree nodes.
Instead, we propose the following algorithm which is optimized for
our specific tree configuration.

First imagine we buffer all the nodes visited in a previous root to
leaf traversal in a small cache list whose size is equal to the depth of
the tree, for example, 3, and whose ordering is leaf to root. In other
words a forward traversal of this list effectively corresponds to an
inverse tree traversal. Next each entry in this cache list is paired
with the following perfect key

53int cacheKey [3] = {x&~((1<< sLog2X)-1),

54y&~((1<< sLog2Y)-1),

55z&~((1<< sLog2Z ) -1)};

where (x,y,z) are the global coordinates used to access the corre-
sponding node. Because this by construction avoids collisions and
at compile time collapses to just three bit-wise AND instructions per
node, determining whether (x,y,z) lie within a cached node can be
done very efficiently in constant time. Then to locate a new voxel, we
traverse the small cache list, and for each entry compute the corre-
sponding cacheKey and check for a match with the buffered node’s
paired key. If a match is found, a shortened tree traversal is initiated
from the corresponding node, and all newly visited child nodes and
keys are updated in the cache list. Specifically this shortened tree
traversal starts by deriving an offset into the corresponding node’s
own direct access table, for example, mInternalDAT, using the
fast bit-wise operations in lines 46–52 of the code. Finally the tree
traversal is terminated once a tile or LeafNode is reached, which
on average results in an improved constant access time. However,
in worst case, traversal of the list proceeds all the way to the root
level, in which case a regular, top-down tree traversal is initiated
and the cache list is completely rebuilt. This is all implemented as
a compile-time-fixed linked list of paired cached nodes and keys
in the Accessor class. This light-weight encapsulation of node
caching provides convenient accelerated random access, and the
various instances of this class are registered in the mAccessors
member in the RootNode (see line 36 of the code).

It is important to note that, for this technique to work efficiently
nodes at any level of the tree must be accessible directly via the
global coordinates, rather than through expensive sequences of lo-
cal coordinate transformations. Examining lines 39–52 of the code
closely, it should be evident that this assumption is satisfied, even
for signed global coordinates (x,y,z). This is a unique and non-
trivial consequence of VDB’s design, in particular of the fact that
it is height-balanced, has a fixed tree depth, and that the branch-
ing factors below the RootNode are powers of two and known at
compile time.

3.3 Sequential Access

Many algorithms access or modify all active voxels in a grid, but are
invariant to the specific sequence in which this happens. In partic-
ular, this is true for most time-dependent simulations, such as level
set propagation or fluid advection. This invariance can be exploited
if we can define a sequential access pattern that outperforms ran-
dom access. We refer to the optimal sequence of data access, given
by the order in which the data are physically laid out in memory,
as “sequential access”. With the advances of sophisticated cache

Table I. Average Access Time complexity for VDB vs DT-Grid
Access type VDB DT-Grid/H-RLE

Sequential lookup O(1) O(1)

Sequential insert O(1) O(1)

Sequential delete O(1) no support

Random lookup O(1) O(log[topology])

Random insert O(1) no support

Random delete O(1) no support

Random access for VDB is in the worst case linear in the depth of the tree, and since this
depth is fixed we effectively achieve constant-time random access. In contrast, random
lookup for DT-Grid/H-RLE depends on search of local grid topology. The order of
sequential access for VDB is lexicographic in local (x,y,z) of the nodes whereas for
DT-Grid/H-RLE it is lexicographic in the global grid (x,y,z).

hierarchies and prefetching algorithms in modern CPUs, it is in-
creasingly important to fetch and process data in the order they
are stored in main memory. Similarly, spatial data structures often
have a significantly lower computational overhead associated with
sequential access compared to random access. Both DT-Grid and
HRLE store grid points in lexicographic order of their global coor-
dinates, (x,y,z), and they offer constant-time lookup and insertion
for this type of sequential access only. In contrast, VDB features
constant-time complexity of both random and sequential access (see
Table I for a summary).

The challenge is to implement sequential access so that it
outperforms the fast random access outlined before. The problem
amounts to locating the next active value or child node, and the
solution is surprisingly simple: iterate over the extremely compact
mChildMask and mValueMask direct access bit masks embedded
in each node. Their compactness makes them cache friendly (no
need to load and search the much bigger direct access tables
mInternalDAT and mLeafDAT), and multiple entries (bits) can be
processed simultaneously. Computing the linear offset to the next
set bit in a mask, mMask, starting from the bit position offset, is
efficiently achieved by

56uint32_t n=offset >>5, m=offset&31, b=mMask[n];

57if (b & (1<<m)) return offset;// trivial case

58b &= 0xFFFFFFFF << m;//mask out lower bits

59while (!b) b=mMask [++n]; //find non -zero 32bits

60return (n<<5)+ DeBruijn [(b&-b)*0 x077CB531U > >27];

where DeBruijn is a static table with 32 entries, and the constant
0x077CB531U is the hex representation of the 32-bit de Bruijn
sequence [Leiserson et al. 1998]. Note that b&-b deletes all but the
lowest bit and >>27 isolates the upper five bits. Multiplication by the
de Bruijn constant makes the upper five bits unique for each power
of two, and the table lists the corresponding bit position of the lowest
bit in b. Also note that line 60 of the code computes the lowest bit
position without branching, that is, conditionals. The combination
of these techniques allows us to implement sequential iterators over
bit masks that very efficiently compute the linear offset into the
corresponding direct access table. Since bit masks reside in all the
nodes of a VDB tree, we can readily combine bit mask iterators at
multiple levels of the tree, allowing us to derive iterators over active
voxel values, active tile values, or LeafNodes, to mention just a few.

3.4 Stencil Access

Efficient stencil access on uniform grids is a fundamental require-
ment for Finite Difference (FD) computations. These schemes ap-
proximate differential operators with discrete differences of grid
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values in a local neighborhood called the support stencil. Other
common stencil applications are interpolation and filtering with
convolution kernels of local support. The sizes and shapes of such
stencils can vary widely depending on the accuracy and type of
the FD scheme. For example, the optimally fifth-order accurate
WENO FD scheme uses 18 neighboring grid points in 3D, whereas
first-order single-side FD uses only six neighboring grid points.
Typically these stencil access methods are combined with sequen-
tial access, which leads to stencil iterators, an essential concept for
many numerical simulations.

Both DT-Grid and H-RLE achieve constant-time sequential sten-
cil access by grouping multiple sequential iterators, one for each
element in the support stencil. Hence, this approach has a computa-
tional overhead that scales linearly with the size of the stencil. With
VDB we can take a simpler and more efficient approach that does not
require the costly synchronization of multiple iterators. Instead we
combine a single sequential iterator, Section 3.3, with the improved
random access technique detailed in Section 3.2. The iterator de-
fines the location of the center point of the stencil, and an Accessor
provides accelerated access to the remaining stencil points. Since
stencils are typically compact, this is an ideal application of node
caching. For very large stencils, for example, during convolution,
we can even employ multiple Accessors, each associated with a
compact subset of the stencil, to decrease LeafNode cache misses
that trigger more expensive tree traversals. Thus, in theory VDB has
the same constant-time complexity for stencil access as DT-Grid,
but in practice VDB amortizes the overhead of retrieving multiple
stencil elements thanks to cache reuse.

To combine a sequential iterator with random access, we need
an efficient way to derive the global coordinates, (x,y,z), from the
linear offset, which uniquely identifies the position of the iterator
within a node’s bit mask. This is achieved by

61x = x0 + (offset >> sLog2Y + sLog2Z);

62n = offset & ((1 << sLog2Y + sLog2Z) - 1);

63y = y0 + (n >> sLog2Z);

64z = z0 + (n & (1 << sLog2Z) - 1);

where (x0,y0,z0) denotes the signed origin of the node encoded
into mFlags for LeafNodes and mX,mY,mZ for InternalNodes.

Finally, we note that some applications actually require random
stencil access. Examples are interpolation and normal computations
during ray marching for volume rendering. It should be evident
from the discussions so far that VDB also supports this type of
access in constant time.

To shield the user from the complexity of the various access
techniques detailed in Section 3, they are all neatly encapsulated in
high-level STL-like iterators and Accessors with setValue
and getValue methods that are easy to use and require no knowl-
edge of the underlying data structure.

4. VDB APPLICATION ALGORITHMS

In this section we will focus on algorithms and techniques that have
significant value for practical applications of VDB to simulations
and sparse dynamic volumes. Additionally Appendices A and B de-
scribe how VDB lends itself to efficient yet simple compression and
out-of-core streaming as well as optimizations like multithreading
and vectorization.

4.1 Topological Morphology Operations

Besides voxel access methods, some of the most fundamental op-
erations on dynamic sparse grids are topology-based morphology

operations like dilation and erosion. These operations add or delete
extra layers of voxels around the existing set, analogous to adding
or removing rings of an onion, and they are used in interface track-
ing during deformations, convolution-based filtering, resampling,
ray marching, etc. It is important to note that these operations work
purely on the grid topology and not on voxel values6.

Since VDB supports constant-time insertion and deletion of
random voxels, it is tempting to implement topological morphology
using these simple access methods. For instance, dilation could
be achieved by iterating a neighborhood stencil containing the
six closest neighbors over existing voxels and randomly inserting
all new grid points intersected by the stencil. A disadvantage
of this approach is that it generally requires two copies of the
grid: one to iterate over and one to store the dilation in. Another
major disadvantage is that this algorithm involves many redundant
random access operations per voxel, since most of the stencil
will intersect existing active voxels. Luckily, there is a much
more efficient approach that exploits the fact that VDB separately
encodes topology and values. Since topology is encoded into the
mValueMasks, we can formulate topology algorithms directly in
terms of these bit masks, which, as will be demonstrated in Sec-
tion 5.5, turns out to be much faster than employing random-access
operations. Thus, dilation can be implemented as the following
scatter algorithm, where the contribution from each z projection of
the mValueMask is scattered onto neighboring bit masks by means
of simple bit-wise OR and shift operations.

65for (int x=0; x<8; ++x) {

66for (int y=0, n=x<<3; y<8; ++y, ++n) {

67uint8_t b = oldValueMask[n];

68if (b==0) continue;//skip empty z-columns

69NN[0][n] |= b>>1 | b<<1;// +-z by itself

70NN[5][n] |= b<<7;//-z by NN[5]

71NN[6][n] |= b>>7;//+z by NN[6]

72(y>0 ? NN[0][n-1] : NN[3][n+ 7]) |= b;//-y

73(y<7 ? NN[0][n+1] : NN[4][n- 7]) |= b;//+y

74(x>0 ? NN[0][n-8] : NN[1][n+56]) |= b;//-x

75(x<7 ? NN[0][n+8] : NN[2][n -56]) |= b;//+x

76}}

Here oldValueMask denotes the original undilated bit mask of a
LeafNode, and NN is an array with seven pointers to the modified
mValueMasks of the nearest neighbor LeafNodes, arranged in the
order 0,-x,+x,-y,+y,-z,+z. So NN[0][7] denotes the seventh
byte of the mValueMask in the LeafNode currently being dilated,
and NN[4][0] denotes the first byte of the mValueMask in the
nearest neighbor LeafNode in the positive y direction. To simplify
the code we have assumed that the LeafNodes have dimensions 83,
but it is easy to generalize it to other dimensions as long as Log2Z
is 3,4,5, or 6, corresponding to 8-, 16-, 32-, or 64-bit operations.
This code performs a topological dilation by one voxel and is very
fast, since it updates eight bits at a time and avoids random access
to voxels. Also note that this algorithm does not require two copies
of the grid; only the very compact oldValueMasks are copied,
and only for the duration of the dilation. A topological erosion
can be implemented in a similar fashion, using bit-wise AND and
shift operations to gather the contribution from each neighboring
z projection of the bit mask. By now it should be apparent that
the bit masks, however simple they may seem, are key elements of
VDB. To recap, we use them for hierarchical topology encoding,

6Topological morphology operations should not be confused with level set
morphology operations that modify both voxel values and grid topology.
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sequential iterators, lossless compression, topological morphology,
and boolean operations.

4.2 Numerical Simulation on VDB

We shall briefly describe how VDB can be used for time-dependent
simulations. We will demonstrate this on level sets, but emphasize
that other time-dependent PDEs like the Navier-Stokes equations
can be solved using similar techniques.

Level set methods typically consist of two fundamental steps
[Breen et al. 2004; Museth et al. 2005]. First, the voxel values are
updated by solving a Hamilton-Jacobi equation, and second, the
topology is updated by rebuilding the narrow band so that it tracks
the moving interface.

The first step allocates as many temporal value buffers in the
LeafNodes as the integration scheme requires and then sequentially
updates the voxels using a stencil iterator appropriate for the spa-
tial finite-difference scheme used to discretize the Hamilton-Jacobi
equation. For instance, to accurately solve hyperbolic advection for
applications like free-surface fluid advection, we would allocate
three buffers to support third-order TVD-Runge-Kutta [Shu and
Osher 1988] and a stencil iterator with 19 elements for optimally
fifth-order WENO [Liu et al. 1994].

The second step is implemented as follows: first, dilate the ex-
isting narrow band by as many voxels as the interface has moved.
Then, renormalize the voxels, and finally, trim away voxels that
have moved too far away from the interface. Because the CFL
condition for the explicit TVD-RK integration scheme implies that
the interface never moves more than one voxel per integration, we
just apply the dilation algorithm in lines 65–76 of the code once. To
renormalize the dilated voxels we solve the hyperbolic Eikonal PDE
using the same discretization schemes employed for the Hamilton-
Jacobi PDE. Finally, we use a sequential iterator to delete voxels
with values larger than the fixed width of the narrow band, and we
prune away any nodes or branches of the tree with an empty (zero)
mValueMask.

4.3 Hierarchical Constructive Solid Geometry

Constructive Solid Geometry (CSG) is one of the most impor-
tant applications for implicit geometry representations like level
sets. It turns out that the underlying tree structure of VDB acts
as an acceleration data structure that facilitates efficient CSG op-
erations. In fact, as will be demonstrated in Section 5.7, we can
achieve near-real-time performance for boolean operations on very
high-resolution level sets. The trick is surprisingly simple: rather
than perform CSG voxel-by-voxel, we can often process whole
branches of the VDB tree in a single operation. Thus, the com-
putational complexity scales only with the number of intersecting
LeafNodes, which is typically small. In lines 77–90 we illustrate
this idea with code to perform a boolean union at the level of the
InternalNodes. (The logic for the RootNode is similar, whereas
the LeafNodes implement the CSG operation (e.g., min or max) at
voxel level.)

4.4 Hierarchical Boolean Topology Operations

Whereas CSG conceptually performs boolean operations on geom-
etry, it is sometimes useful to define boolean operations directly
on the topology of the active values in two grids, particularly if
the grids are of different types. For example, it might be useful to
union the active value topology of a scalar grid with that of a vector
grid. As should be evident from the discussions previous this is
efficiently achieved in VDB with hierarchical bit-wise operations
on the respective mValueMasks.

77void csgUnion(InternalNode *other) {

78for (Index n=0; n!=Size; ++n) {

79if (this ->isChildInside(n)) continue;//skip

80if (other ->isChildInside(n)) {

81this ->makeChildInside(n);

82} else if (this ->isChildOutside(n)) {

83if (other ->isChild(n)) this ->setChild(n,

84other ->unsetChild(n));// transfer child

85} else if (other ->isChild(n)) {

86mInternalDAT[n].child ->csgUnion(

87other ->InternalDAT[n]. child ));// recurse down

88if (InternalDAT[n].child ->isEmpty ())

89this ->makeChildInside(n);// prune empty

90}}}

4.5 Mesh To Level Set Scan Conversion

A common way to construct a volume is to convert an existing
polygonal mesh into a signed distance function. This process of
converting explicit geometry into an implicit representation is com-
monly referred to as scan conversion. While there are several fast al-
gorithms for scan conversion [Breen et al. 1998; Chang et al. 2008],
they are all based on regular dense grids, and as such have significant
limitations on achievable resolution. However, as demonstrated in
Houston et al. [2006, Section 6.2], it is relatively easy to modify
these dense scan converters to work with sparse data structures. The
fundamental idea is to partition the mesh into nonoverlapping tiles
such that each tile contains all the polygons of the original mesh that
lie within a distance of β/2, where β is the width of the narrow band.
Then, the submeshes are scan converted into the appropriate dense
tiles using a dense grid algorithm like Mauch [1999]. The problem is
that most existing sparse level set data structures, like DT-Grid and
H-RLE, do not support random insertion (or deletion), but require
the grid points to be inserted in lexicographic order of the coordi-
nates. Hence, an additional step is required before the level set can
be generated, namely three bucket sorts which are both time and
memory consuming. With VDB, however, the distance values can
be inserted in the random order in which they are computed. In fact,
since VDB is already a blocked grid we can further improve perfor-
mance by using the LeafNodes as tiles. This allows us to apply the
scan converter directly to the LeafNodes, avoiding the overhead of
the auxiliary data structure that allocates the dense tiles. Overall,
VDB lends itself well to sparse scan conversion, making it attractive
for movie production, where geometry is usually modeled explicitly.

Finally, we note that support for random insertion in VDB is
also very important when converting other types of geometry into
volumes. Examples include “skinning” of animated particle systems
typically generated from SPH, PIC, or FLIP fluid simulations, where
VDB allows us to rasterize the particles in arbitrary order, again
unlike DT-Grid and H-RLE.

4.6 Hierarchical Flood-Filling

The scan conversion of meshes or particles described earlier pro-
duces a sparse VDB with active voxels, that is, LeafNode values,
within a closed manifold narrow band only. For inactive voxels and
and tiles outside the narrow band a little more work is needed to
determine correct signed values. Fortunately, the outward propa-
gation of signs from the active voxels in the narrow band can be
implemented efficiently with VDB and incurs negligible computa-
tional overhead in the overall scan conversion. The basic idea is to
recast the problem as a hierarchical boundary-value propagation of
the known (frozen) signs of active voxels. Since, by construction,
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all LeafNodes are guaranteed to contain active values, they can be
flood-filled concurrently using the following algorithm.

91int i = mValueMask.findFirstOn ();

92for (int x=0; x!=1<<Log2X; ++x) {

93int x00 = x << Log2Y + Log2Z;

94if (mValueMask.isOn(x00)) i = x00;

95for (int y=0, j=i; y!=1<< Log2Y; ++y) {

96int xy0 = x00 + (y << Log2Z);

97if (mValueMask.isOn(xy0)) j = xy0;

98for (int z=0, k=j; z!=1<< Log2Z; ++z) {

99int xyz = xy0 + z;

100if (mValueMask.isOn(xyz))

101k = xyz;

102else

103mLeafDAT.values[xyz] = copysign(

104mLeafDAT.values[xyz],mLeafDAT.values[k])

105}}}

This algorithm works by scanning the active values in the mLeaf-
DAT in lexicographic order and consistently transferring signs from
active to inactive values. The resulting signs are then used as bound-
ary values for a similar scanline algorithm applied recursively to the
parent nodes until the process terminates at the top level. Thus, by
virtue of the hierarchical representation of the narrow band, no sign
is ever required to be propagated between nodes at the same (or a
lower) tree level. Consequently, the overall signed flood-filling is
strictly bottom-up, and in practice, this operation can be performed
in near real time (see Section 5.6).

4.7 Accelerated Ray Marching

Another benefit of VDB over existing level set data structures like
DT-Grid, and tiled grids like DB-Grid, is that its hierarchical tree
structure acts as a multilevel bounding volume acceleration struc-
ture for ray marching. Narrow-band level set data structures can
only ray leap a distance corresponding to the width of the narrow
band, and tiled grids can only skip over regions corresponding to a
single tile size. However, VDB can leap over larger regions of space
by recursively intersecting the ray against nodes at any level of the
tree. One possible manifestation of this idea is a hierarchical, that is,
multilevel, 3D Bresenham algorithm that improves the performance
of ray integration in empty or constant regions of index space
represented by multilevel tile values. Figure 1 shows two final
frames from the animated feature Puss in Boots, both generated
using VDB-accelerated volume rendering of time-varying clouds
[Miller et al. 2012]. The right image in Figure 7 shows accelerated
direct ray-tracing of a deforming narrow-band level set represented
in a VDB.

5. EVALUATION AND BENCHMARKS

To support our claims regarding performance of VDB we bench-
mark various configurations of VDB against existing sparse data
structures, focusing especially on DT-Grid [Nielsen and Museth
2006], since it also supports numerical simulations and has been
demonstrated to outperform octrees and H-RLE in both access time
and memory footprint (see Chapter 7 of Nielsen [2006]). How-
ever, for completeness, and whenever feasible, we will also include
benchmark comparisons to other sparse data structures, including
tiled grids, octrees, and N-trees.

To best facilitate comparisons to other data structures, we strive
to present benchmarks that are easily reproducible. Hence we limit

Fig. 7. Middle frame of deformation test [Enright et al. 2002] @ 20483 on
the Utah teapot. Left: LeafNodes, Right: Direct ray-tracing of VDB.

our comparisons to simple, well-documented setups, as opposed to
complex production examples, and to open-source reference imple-
mentations whenever possible. To this end we use the following
open-source reference data structures: DT-Grid [2009], sparsehash
[2009], and Field3D [2009]. The latter includes a tiled sparse grid,
SparseField, developed specifically for VFX, which we shall re-
fer to as F3DSF, short for Field3D::SparseField. DB-Grid[Museth
et al. 2007] is a proprietary data structure developed at Digital Do-
main, so we cannot include it in our evaluation, but like F3DSF
it is a sparse tiled grid, though the implementations are rather
different.

The setup for the actual data on which we perform the bench-
mark tests is described in Enright et al. [2002], and our reference
implementation is taken from DT-Grid [2009]. This so-called “En-
right test” has become a de facto standard for benchmarking level
set data structures and is easy to duplicate, but since the stan-
dard test employs extremely simple topology (a sphere), it favors
the DT-Grid due to its logarithmic dependency on local topology
for random access. Consequently, we will additionally employ an
“8x” version of the Enright test, which was recently introduced in
Christensen et al. [2011] (see Figure 10). All narrow-band level
sets will be (2 × 5) = 10 voxels wide, which is the configuration
of choice in DT-Grid [2009] when using the high-order WENO
scheme.

All reported CPU times and memory footprints are computed
as the statistical average of five runs on a workstation with dual
quad-core Intel Nehalem-EP W5590 CPUs with 4 × 32KB L1, 4 ×
256KB L2, 8MB L3, and 48GB RAM (DDR3-1333). Unless oth-
erwise specified, all benchmark numbers are measured on a single
computational thread, and memory usage is the memory consump-
tion registered by the operating system (Red Hat Enterprise Linux
v5.4). Our testing has shown that this can be reliably determined by
examining /proc/self/statm between grid allocations. This pro-
duces larger but more realistic memory footprints than theoretical
estimates that ignore issues like data structure misalignment.

Throughout this section we shall use the following notation for
the various configurations of VDB: [R, I1, . . . , ID−1, L], where R
specifies the type of hash map employed by the RootNode, Id

denotes the base two logarithmic branching factors (Log2w) of the
InternalNodes at level 1 ≤ d < D, and L denotes the Log2w
of the LeafNodes. Thus, D specifies the depth of the underlying
B+tree, and [Hash, 5, 4, 3] denotes a dynamic VDB of depth three
with a hash table encoding branches of size 32 × 16 × 8 = 4096.
Alternatively we use the notation [I0, I1, . . . , ID−1, L] for static
VDB configurations with InternalNodes at all levels 0 ≤ d < D,
that is, [10, 3] denotes a tiled grid with an available grid resolution
of (210 × 23)3 = (1024 × 8)3 = 8, 1923.
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5.1 Random Access

Table II shows random access times, memory footprints, and effec-
tive resolutions of various configurations of VDB and other sparse
data structures measured on two different datasets. The red values
correspond to the original Enright sphere and the blue values to
the 8x variation shown in Figure 10. Both sparse level sets have an
effective data resolution of 4, 0963 = (212)3, as defined in Enright
et al. [2002], and a narrow-band width of ten voxels corresponding
to, respectively, 51,033,829 and 263,418,462 active voxels.

The random access tests in Table II measure the average compu-
tational overhead of looking up an arbitrary active voxel value. The
reported times are averages of times per lookup over 100 random
coordinates, each repeated 107 times to eliminate the overhead of
fetching data from main memory. Note that for this benchmark test it
is essential to declare the reused coordinates volatile, since most
C++ compilers will otherwise optimize away repeated lookups
with identical arguments. The specific access pattern consists of
randomized coordinates constrained to the narrow band, so as to
measure lookup times for leaf voxels rather than tile values. Since
each of the random lookups is repeated several times, on average,
the data being accessed reside entirely in the cache. This effectively
amortizes cache misses that could otherwise dominate the cost of
navigating the data structure. The access pattern and number of
repetitions are of course identical for all the timings listed in Ta-
ble II, and the average times per lookup are measured relative to the
fastest observed access time. As a cautionary note, we stress that
absolute timings of random access can be sensitive to the specifics
of the underlying test, hardware and even compiler. However, we
feel confident that the relative CPU times are useful for a baseline
comparison of the various data structures.

For all the VDB configurations in Table II (the first 4 × 4 rows),
random access times are computed using two different algorithms:
the optimization trick described in Section 3.2 and the slower “brute-
force” top-down tree traversal described in Section 3.1. These two
measurements represent respectively the best and worst random
access performance of VDB in terms of varying spatial coherence
of the access pattern. However, it is important to stress that the best-
case scenario of LeafNode-coherent access is common in practice,
so the low constant access times in Table II are actually typical for
random access of VDB.

The last column of Table II lists the available resolution of the
various grid configurations, not to be confused with the effective
resolution of the data, which is fixed at 4, 0963, as noted before.
We define the available resolution as the actual index range of
the grid. It is important to recall that only VDB configurations
with a RootNode have conceptually infinite available resolution, a
nontrivial feature only shared by DT-Grid. However, the available
resolution of any grid is ultimately limited by the bit-precision of
the coordinates (a grid that uses 32-bit integer coordinates cannot
be larger than (232)3 = (4, 294, 967, 296)3) and of course by the
available memory. All the grids appearing in Table II are configured
with an available resolution of at least 8, 1923, which we consider
the minimum for a grid to be regarded as high resolution. The only
exception is [3, 3, 3, 3], which by construction has a small, fixed
resolution of 4, 0963.

In the first four rows of Table II the VDB tree depth varies from
4 to 1, while the LeafNode size is fixed at 83, and branching factors
increase from the bottom up. This is the general configuration
recommended in Section 2.4. The results suggest that worst-case
random access depends linearly on the tree depth but is otherwise
independent of both the data topology and size, whereas spatially
coherent random access is independent of the tree depth and has

Table II. Random Lookup Times and Memory Footprints
Enright 8×
Grid config.

Random Lookup
Section 3.2 ↑
Section 3.1 ↓

Memory Footprint
(megabytes)

Available
Resolution

[7,6,5,4,3] 1 14 1 15 439 2,275 33, 554, 4323

[6,5,4,3] 1 10 1 10 422 2,259 262, 1443

[6,4,3] 1 7 1 7 420 2,256 8, 1923

[10,3] 1 3 1 3 8,723 10,492 8, 1923

[6,5,4,5] 1 11 1 11 1,078 5,904 1, 048, 5763

[6,5,4,4] 1 11 1 11 625 3,398 524, 2883

[6,5,4,3] 1 10 1 10 422 2259 262, 1443

[6,5,4,2] 1 10 1 10 389 2,076 131, 0723

[6,6,6,6] 1 11 1 11 1,977 11,191 16, 777, 2163

[5,5,5,5] 1 11 1 11 1,072 5,899 1, 048, 5763

[4,4,4,4] 1 11 1 11 625 3,398 65, 5363

[3,3,3,3] 1 11 1 11 413 2,218 4, 0963

[Hash,4,3,2] 1 18 1 18 362 1,917 ∞
[Hash,5,4,3] 1 17 1 17 420 2,257 ∞
[Map,4,3,2] 1 25 1 33 362 1,917 ∞
[Map,5,4,3] 1 14 1 14 420 2,257 ∞

[F3DSF,3] 14 14 33,156 34,846 8, 1923

[F3DSF,4] 14 14 4,698 7,366 8, 1923

[F3DSF,5] 15 15 1,586 6,407 8, 1923

Octree# 50 50 390 2,048 8, 1923

Octree∗ 70 70 390 2,048 262, 1443

DT-Grid 22 25 253 1,182 ∞
Relative CPU times for 107 lookups of 100 random lookups in two different data
sets (Enright et al. [2002] and the 8×[Christensen et al. 2011] variant), both at an
effective resolution of 40963. For all tests, one time unit is approximately 1

2 second. For
VDB, times are reported using the two different random access techniques described
in Section 3.1 (worst case top-down) and Section 3.2 (cached bottom-up). “Hash”
and “Map” denote RootNodes with respectively a hash table [sparsehash 2009] and
std::map, and “[F3DSF,X]” refers to Field3D [2009] with a block size of 2X . The
memory footprints are given in 10242 bytes (MB) as reported by the OS (RHLE v5.4),
and no in-core compression or bit quantization is applied.

almost negligible cost. In fact, we use this constant LeafNode-
coherent access time as the unit of relative time for all the reported
lookups in Table II. In addition, we observe that the memory
footprint of the very shallow [10,3] configuration is very large, even
compared to [6,4,3], which has the exact same available resolution.
This is a consequence of the large, (210)3 = 10243, mInternalDAT
of [10,3], a significant limitation shared by other tiled sparse grids
(see the following). Finally, the available resolutions of the first two
configurations of depth 4 and 3 are orders of magnitude larger than
the last two. In conclusion, [6,5,4,3] seems to offer the best balance
of fast random access, low memory foot prints, and high available
resolution.

In the next four rows of Table II (5–8) the VDB depth is fixed to
three, and only the size of the LeafNode varies. As expected, both
the worst- and best-case random access are constant, however the
memory foot,prints and available resolutions change dramatically.
The memory footprint decreases as the LeafNode size decreases,
because the number of inactive voxels decreases. This clearly fa-
vors [6,5,4,3] and [6,5,4,2], which have almost the same memory
footprint, whereas the larger LeafNodes of [6,5,4,3] are favored for
available resolution. Again, the best balance is arguably [6,5,4,3].
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The next four rows of Table II (9–12) benchmark configurations
of VDB with fixed depth and branching factors, effectively corre-
sponding to N -trees 7. While the random access times are constant,
both the memory footprints and available resolutions show extreme
variations. For example, [3,3,3,3] has a very small memory footprint
but unfortunately also the lowest available resolution of any config-
uration in Table II. In contrast both [6,6,6,6] and [5,5,5,5] have very
significant memory overheads. Of these N-trees, [4,4,4,4] offers the
best balance, but the memory footprint is still larger than almost all
trees with variable branching factors, and the available resolution is
significantly smaller than, in particular, [7,6,5,4,3] and [6,5,4,3].

The next four rows of Table II (13–16) benchmark configura-
tions of VDB employing RootNodes with either a hash table or
a std::map (the former combines the improved hash function in
lines 39–45 of the code with a dense hash map[sparsehash 2009]
which is the fastest open-source implementation we are aware
of) together with internal and leaf nodes with branching factors
25 × 24 × 23 = 4096 and 24 × 23 × 22 = 512. Table II clearly
shows that the memory footprints are relatively small and iden-
tical for the two types of sparse root table. However, of the two
sets of branching factors, [4,3,2] has the smallest footprint, primar-
ily because the dense LeafNodes are smallest. While the top-down
random lookup times for [Hash,5,4,3] and [Hash,4,3,2] are virtually
identical for both data sets, the same is not true for the std::map
variants. In fact [Map,5,4,3] has the fastest constant access time
for both datasets, whereas [Map,4,3,2] is significantly slower and
also increases with the size of the dataset. This is a consequence of
the fact that (on average) hash tables have constant random access
whereas map lookup is logarithmic in the table size. Specifically, for
the two datasets in Table II, all [5,4,3] configurations have only one
entry in the mRootTable, whereas the [4,3,2] variants have respec-
tively 29 and 160 entries. However, all configurations have identical
LeafNode-coherent lookup times, but [5,4,3] is on average more
likely to amortize the mRootTable access complexity since the tree
branches span a larger coordinate domain than [4,3,2]. In summary
[Hash,5,4,3] offers the best balance of all the factors.

The last six rows of Table II list results generated with competing
sparse data structures for dynamic volumes, including three con-
figurations of F3DSF, two octrees, and DT-Grid. The three F3DSF
configurations employ block sizes of, respectively, 83, 163, and
323, 163 being the default configuration. All F3DSF configurations
have relatively large memory footprints and slow random access,
especially when compared to [10,3] which is conceptually a
similarly configured tiled grid. The better performance of [10,3]
is likely due to the implementation details presented in Section 2.3
and Section 3.1. Regardless, this illustrates why a tiled grid with a
dense root table does not generally scale to high resolutions. Con-
versely, both octrees have relatively small memory footprints due
to their extremely small branching factor of two, but unfortunately
they suffer slow random access due to their tall tree structures, even
with a modest available resolution of 8, 1923. This is despite the fact
that we implemented the octrees using the optimizations described
in Stolte and Kaufman [1998] and Frisken and Perry [2002]. The
only differences between Octree# and Octree∗ in Table II are the
tree depths of, respectively, 13 and 18, with corresponding available
resolutions 8, 1923 and 262, 1443. DT-Grid on the other hand was
developed specifically for narrow-band level sets and hence has an
impressively small memory footprint, but its random access is the
slowest of all in the table, with the notable exceptions of octrees and

7We stress that similarity to the N -tree proposed in Crassin et al. [2009] is
only superficial, since VDB introduces novel access algorithms.

Fig. 8. Left: Torus-knot with a sweeping helix represented as a level set
surface in a VDB with an effective resolution of 40963. Included as an
example of complex grid topology, it was created by taking the CSG union of
5 million spheres positioned randomly along a parametric representation of
the Torus-Knot-Helix. It only took about three seconds to generate the level
sets using multithreading. Right: Stanford bunny shown with LeafNodes.

top-down traversal of [Map,4,3,2]. As with [Map,4,3,2], random
access for DT-Grid has a dependency on the dataset that is caused
by the logarithmic lookup complexity on local topology. However,
the biggest disadvantages of DT-Grid are that, by construction, it
is limited to narrow-band level sets and it does not offer random
insertion and deletion. Finally we note that DT-Grid also supports
conceptually unbounded grids.

As a practical application of random insertion consider Figure 8,
which shows a complex level set surface (not a curve), generated
by rasterizing into a [6,5,4,3] VDB five million animated spheres
distributed randomly along an analytical Torus-Knot-Helix (TKH)
curve. This narrow-band level set, with an effective resolution of
4, 0963, was rasterized on our eight-core workstation in about three
seconds per frame.

In summary, VDB offers fast average random access and rel-
atively small memory footprints. In fact, for the common case of
spatially coherent access, our specific tests suggest that VDB can be
significantly faster than octrees, F3DSF, and DT-Grid. Of the many
different configurations of VDB listed in Table II, [Hash,5,4,3] and
[6,5,4,3] seem to strike a good balance between random access,
memory footprint and available resolution, which is consistent with
the predictions in Section 2.4.

5.2 Simulation Using Sequential Stencil Access

To evaluate sequential stencil access we use the level set simula-
tion described in Enright et al. [2002]. This “Enright test” essentially
mimics the numerical computations (solving hyperbolic PDEs) typ-
ical for interface tracking in fluid animations. Specifically, geometry
is advected in an analytical divergence-free and periodic velocity
field [Leveque 1996], so that the volume loss is an indication of nu-
merical dissipation due to finite differencing discretization errors.
Since this truncation error diminishes (often nonlinearly) as the
voxel size decreases, volume loss diminishes as the grid resolution
increases. This is illustrated in Figure 9, where very detailed ge-
ometry (the Armadillo model) is advected at an effective resolution
of 40963 and by the final frame shows few signs of volume loss.
Similar advections in the Enright velocity field are shown for the
“half-period” frames in Figure 7 and Figure 10 for, respectively, the
Utah teapot at 20483 and the eight-sphere dataset used in Table II
at 40963, the latter containing more than a billion active voxels.
However, for the following benchmarks we use the original dataset
(a single sphere) described in Enright et al. [2002]. This makes our
results easier to reproduce, especially since this “vanilla Enright

ACM Transactions on Graphics, Vol. 32, No. 3, Article 27, Publication date: June 2013.



VDB: High-Resolution Sparse Volumes With Dynamic Topology • 27:17

Fig. 9. Level set application of high-resolution VDB with configuration [5,4,3,2]. Divergence-free advection of the Armadillo at an effective resolution of
40963. Far left: Close-up of the dynamic 43 LeafNodes. Remaining frames show time= 0, 1

8 , 1
4 , 1

2 , 1 period. At the half-period the voxel count is 90,398,733.
Notice how the initial (time=0) and last (time=1) frames appear almost identical, indicating low volume loss due to numerical dissipation.

Table III. Simulations Times For VDB and DT-Grid in Seconds
Enright Active

Voxels
DT-Grid
sec/itera

[6,5,4,3]
sec/itera

[6, 5, 4, 3]||

sec/itera

5123 794,720 2.40 0.61 (3.9×) 0.08 (30×)

1, 0243 3,189,240 9.56 2.46 (3.9×) 0.29 (33×)

2, 0483 12,784,621 37.8 9.75 (3.9×) 1.13 (34×)

4, 0963 51,033,829 154 39.1 (3.9×) 4.39 (35×)

8, 1923 203,923,476 613 157 (3.9×) 17.7 (35×)

16, 3843 815,936,095 2,454 636 (3.9×) 70.8 (35×)

CPU times in seconds for a single time integration step of the standard Enright test
[Enright et al. 2002] at various effective data resolutions. For VDB, the speedup
over DT-Grid is shown in parentheses. In the last column, [6, 5, 4, 3]||, VDB is fully
multithreaded on two quad-core CPUs. Note that [Hash,5,4,3] and [Map,5,4,3] exhibit
virtually identical performance to [6,5,4,3] and are therefore not listed.

test” is included in the open-source DT-Grid distribution [DT-Grid
2009]. As noted before, the extreme simplicity of this dataset is
likely to favor the DT-Grid data structure.

Table III lists CPU times in seconds for a single-time integration
step of the original Enright test at various effective data resolutions.
We define this integration step as one hyperbolic advection step in
the analytic incompressible Enright field with t = 0, followed by
three renormalization steps of the level set, and finally a complete
rebuild of the narrow band. In the case of VDB, these steps are
implemented using the techniques described in Section 4.2, and as
in DT-Grid [2009], we employ third-order TVD-Runge-Kutta [Shu
and Osher 1988], optimally fifth-order WENO [Liu et al. 1994], and
a narrow-band width of ten voxels. Similarly, for the time integration
of the advection PDE the CFL is set to 0.5, whereas a CFL of
0.3 is used for the Eikonal PDE. Our comparison is necessarily
limited to DT-Grid since, to the best of our knowledge, it is the only
open-source sparse data structure that includes support for all the
required level set operations, that is, advection, renormalization, and
narrrow-band rebuild. However, as shown in Nielsen and Museth
[2006] and Nielsen [2006], DT-Grid outperforms octrees, H-RLE,
and dense grids for level set computations.

We first note that VDB ([6,5,4,3]) is consistently faster than
DT-Grid, despite the fact that DT-Grid was designed for exactly this
type of level set computation. On a single computational thread, the
speedup factor is approximately four, which, curiously, corresponds
to the increase in surface voxels for a doubling of the grid resolution.
Hence, in the time it takes DT-Grid to complete one time integration
step at a given resolution, VDB can perform the same simulation
at twice the resolution, that is, four times the data size. We suspect
that this performance advantage is due to a combination of factors,

including improved data locality (i.e., cache reuse), better hardware
utilization (see Appendix B), more efficient stencil iterators, and
the general algorithmic efficiency of random insertion/deletion and
topological dilation (Section 4.1) for the narrow-band rebuild.

The last column in Table III lists CPU times for a time integra-
tion step using multithreaded advection and renormalization on a
[6,5,4,3] VDB. The speedup is almost equivalent to the number of
physical cores (8), and for five out of six resolutions it is actually
superlinear, suggesting an effect from the larger aggregate cache
of multiple CPUs. This explanation is supported by the fact that
superlinear speedup is not observed for the smallest problem size,
5123, which, as we shall see in Table IV, fits into the 8MB L3
cache of a single CPU. Unfortunately, DT-Grid [2009] is not mul-
tithreaded, and while there is no reason to believe that it could not
be parallelized, with the possible exception of the rebuild step, the
complexity of this data structure makes this nontrivial. As such we
conclude that for these numerical simulations [6,5,4,3] offers very
significant performance advantages (4× to 35×) over DT-Grid. Fi-
nally we note that both [Hash,5,4,3] and [Map,5,4,3] perform the
benchmarks in Table III indistinguishably from [6,5,4,3], which is
to be expected since this simulation is dominated by sequential
stencil access.

In the more practical context of surface tracking in fluid
simulation, level set advection often involves velocity fields
represented on MAC grids. These “staggered” grids conceptually
store the Cartesian components of the velocities at cell faces
rather than colocated at cell centers. This is a popular technique
to suppress so-called checkerboard frequencies in the pressure
projection step of most Navier-Stokes solvers. However, instead of
devising specialized data structures for MAC grids, it is customary
to use standard collocated grids, and simply move the staggered
interpretations of the grid indexing and values to client code. In
other words, VDB fully supports MAC grids, and we use special
interpolation schemes to convert from staggered to colocated
velocities required for level set advection.

5.3 Memory Footprints

Table IV lists memory footprints of DT-Grid, F3DSF and two
configurations of VDB, encoding the Enright dataset reported in
Table III. For VDB we include memory footprints for both in-core
(red) and partially out-of-core (blue) storage (see Appendix A). Un-
like in Table II, the available resolution of F3DSF is identical to the
effective data resolution, since this leads to the smallest memory
footprint. The block size of F3DSF is kept at its default value of 163.
As observed in Table II, the significant overhead of allocating the
dense root table in F3DSF can be reduced by increasing the block
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Table IV. Comparing Memory Footprints in MB
Enright DT-Grid [F3DSF,4] [Hash,4,3,2] [Hash,5,4,3]

5123 4.3 10.5 5.7/1.0 6.7/0.4

1, 0243 16.9 45.9 22.7/3.6 26.5/1.9

2, 0483 69.8 215.6 90.8/17.2 105.3/7.1

4, 0963 253.0 1,114.2 361.9/68.7 420.2/29.8

8, 1923 904.9 6,501.2 1,444.3/274.0 1,679.4/117.2

16, 3843 3,619.7 >48,000.0 5,780.1/1,097.6 6,722.9/468.2

Memory footprints in MB for DT-Grid, F3DSF, and VDB. The dataset is the standard
Enright test [Enright et al. 2002] at various effective data resolutions. The correspond-
ing active voxel counts are given in Table III. Red indicates completely in-core and
blue indicates partially out-of-core (see Appendix A). No compression or bit quanti-
zation is applied to any of the in-core data structures. F3DSF at 16, 3843 ran out of
memory on our 48GB workstation.

size. However, it should be noted that F3DSF, unlike VDB, cannot
distinguish between active and inactive voxels within the blocks,
which implies that large block sizes can lead to computational over-
heads from processing dense blocks versus sparse voxels.

From Table IV we conclude that, for the Enright dataset, DT-Grid
has the smallest in-core memory footprint, which is consistent with
Table II and is not surprising, considering that DT-Grid was specif-
ically optimized for (but also limited to) narrow-band level sets. Of
the two VDB configurations, the in-core [Hash,4,3,2] consistently
has the smaller memory footprint, due to its smaller LeafNode size
of 43, whereas the out-of-core [Hash,5,4,3] has the smaller memory
footprint due to its smaller tree. Both in-core VDB configurations
have a memory footprint less than twice that of DT-Grid, whereas
the out-of-core configurations are almost an order of magnitude
smaller. However, the current implementation of out-of-core VDB
does not support dynamic topology or stencil-based finite-difference
computations, and as such is limited to load-on-read applications
like volume rendering. F3DSF consistently has the largest in-core
memory footprint, and Table IV clearly illustrates how the over-
head of the dense block table increases rapidly with the resolution.
In fact, 16, 3843 could not be achieved with the available 48GB of
RAM.

5.4 File Sizes and Write Speeds

For narrow-band level sets, we saw that DT-Grid has the smallest
in-core memory footprint, but in a production environment where
network-attached storage arrays are expensive and bandwidth is
limited, file sizes are often a bigger concern, especially when dealing
with time-varying data.

Table V compares files sizes of DT-Grid, F3DSF, and VDB rep-
resenting the Enright dataset reported in Table III and Table IV. DT-
Grid employs the Compressed-Row-Storage (CRS) codec [Nielsen
and Museth 2006], whereas F3DSF uses [HDF5 2010] for I/O,
which employs GZIP that is based on the lossless “Deflate” codec.8
The F3DSF results are for the default block size of 163, whereas
VDB is configured as [6,5,4,3].

The three last columns list VDB file sizes for various combi-
nations of compression techniques. The first of these is the fast
active-mask compression described in Appendix A, which leads to

8HDF5 is distributed with the proprietary compression scheme SZIP, which
was enabled by default since HDF5 1.6.0. SZIP embodies patents that are
held by the National Aeronautics and Space Administration and requires a
license for commercial use. Thus, for all the HDF5-related tests presented in
this article we have replaced SZIP with the free GZIP compression scheme.

Table V. Comparing File Sizes of DT-Grid, F3DSF and VDB
Enright DT-Grid

CRS
F3DSF
Deflate

[6, 5, 4, 3]
bit-mask

[6, 5, 4, 3]
+Deflate

[6, 5, 4, 3]
+Half

5123 3.40 2.66 3.28 2.84 1.68

1, 0243 13.60 11.41 13.06 11.11 6.67

2, 0483 54.49 50.16 52.23 43.47 26.74

4, 0963 217.40 234.66 208.46 166.93 106.46

8, 1923 868.53 1235.88 832.84 648.72 422.39

16, 3843 3,474.81 ? 3,332.45 2,510.33 1,669.48

Files sizes in MB for DT-Grid, F3DSF and VDB [6,5,4,3]. CRS denotes the “com-
pressed row storage” scheme employed by DT-Grid. “Deflate” is the codec used in
GZIP, F3DSF and optionally VDB. Bit-mask refers to the compression scheme de-
scribed in Appendix A. In the last column, bit-mask and Deflate compression are
combined with 32- to 16-bit float quantization. F3DSF at 163843 requires more than
the available 48GB of RAM, so the file size could not be determined.

file sizes that are slightly smaller than for DT-Grid. Next, we apply
the lossless Deflate9 codec to the bit-mask compressed voxel array.
We observe that this reduces the files sizes of VDB by 13% to 25%.
Finally we apply lossy 32- to 16-bit quantization using the “half
float” implementation from the OpenEXR library. While Deflate
and bit quantization are not currently supported by DT-Grid [2009],
they could certainly be added. Regardless, for all the level sets in
Table V VDB consistently has the smallest file sizes, despite the fact
that DT-Grid was explicitly optimized for narrow-band level sets.
This is largely because VDB saves only active voxels and bit masks,
eliminating the overhead of dense tree nodes. It is also interesting to
note that, with Deflate compression, VDB produces much smaller
file sizes than F3DSF (which also uses Deflate), with the exception
of the very smallest data resolution of 5123. In fact, the difference
in file sizes between VDB and F3DSF grows significantly as the
data size increases. Since the in-core F3DSF at 16, 3843 could not
be generated, neither could the corresponding file.

Though small file sizes are desirable for obvious reasons, write
times can also be important, especially in the context of simulations,
where output of temporal data can be a bottleneck. Table VI reports
CPU write times corresponding to the files listed in Table V. The
first thing to note is that despite the fact that DT-Grid and [6,5,4,3]
have similar file sizes, DT-Grid writes 3–4 times slower than the bit
mask-compressed VDB. We are somewhat surprised by this, and
can only attribute it to the superior performance of the bit-based
codec in VDB over CRS in DT-Grid. With Deflate compression,
VDB is also significantly faster than F3DSF, the more so when
bit quantization is also applied (prior to Deflate). Finally we note
that [Hash,5,4,3] and [Map,5,4,3] produce file sizes and write times
similar to [6,5,4,3].

5.5 Morphological Dilation

Table VII lists timings for topology dilations of the datasets in
Table III for VDB and DT-Grid, the only two formats with na-
tive support for this operation. For the column labeled “[6,5,4,3]
Optimal”, we use the bit mask-based topology dilation algorithm
described in Section 4.1, and for the last column we use brute-force
random access. Observe that VDB is consistently faster (7×) than
DT-Grid, and that the algorithm in Section 4.1 is more than an or-
der of magnitude (17×) faster than the brute-force approach using

9Deflate, also used by F3DSF, is a generic data compression algorithm that
combines the LZ77 algorithm with Huffman coding. A reference implemen-
tation of Deflate is available in the open-source zlib library.
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Table VI. Comparing Write Times for DT-Grid, F3DSF and VDB
Enright DT-Grid

CRS
F3DSF
Deflate

[6, 5, 4, 3]
bit-mask

[6, 5, 4, 3]
+Deflate

[6, 5, 4, 3]
+Half

5123 0.04 0.58 <0.01 0.25 0.19

1, 0243 0.13 2.20 0.04 1.02 0.74

2, 0483 0.47 8.81 0.18 4.18 3.21

4, 0963 1.84 35.35 0.65 16.83 13.11

8, 1923 9.53 148.75 2.34 67.08 48.67

16, 3843 47.22 ? 10.33 258.31 192.92

CPU times in seconds to write DT-Grid, F3DSF, and VDB [6,5,4,3] to files. CRS
denotes the “compressed-row-storage” scheme employed by DT-Grid. “Deflate” is the
codec used in GZIP, F3DSF, and optionally VDB. Bit mask refers to the compression
scheme described in Appendix A. In the last column, bit mask and Deflate compression
are combined with 32- to 16-bit float quantization. F3DSF at 163843 requires more
than the available 48GB of RAM, so the write time could not be determined.

Table VII. Dilation Times for VDB and DT-Grid
Enright Active

Voxels
DT-Grid
Optimal

[6,5,4,3]
Optimal

[6,5,4,3]
Brute-Force

5123 794,720 0.03 <0.01 (?×) 0.05 ( ?×)

1, 0243 3,189,240 0.07 0.01 (7×) 0.18 (18×)

2, 0483 12,784,621 0.28 0.04 (7×) 0.73 (18×)

4, 0963 51,033,829 1.17 0.17 (7×) 2.90 (17×)

8, 1923 203,923,476 4.60 0.70 (7×) 11.61 (17×)

16, 3843 815,936,095 17.93 2.70 (7×) 46.53 (17×)

CPU times in seconds for a narrow-band dilation by one voxel of the standard Enright
dataset [Enright et al. 2002] at various effective data resolutions. By “Optimal”
we mean the fastest algorithm available, whereas “Brute-Force” refers to a naive
approach using random access. The first VDB column lists the speedups over DT-
Grid in parentheses. The last column lists the speedup of the optimal VDB algorithm
over the brute-force approach in parentheses.

random insert to add new voxels. It is also worth emphasizing that
the algorithm employed by DT-Grid is limited to closed narrow-
band level sets, whereas the dilation algorithm of VDB has no such
topology limitations.

5.6 Hierarchical Flood-Fill

Table VIII lists CPU times for hierarchical flood-fill of various VDB
configurations encoding the standard Enright dataset in Table III.
This algorithm is typically used to define the signs of voxels outside
the narrow band of a level set (i.e., the inside/outside topology). The
performance advantage of this hierarchical algorithm is especially
evident when comparing the timings for [10,3], which is conceptu-
ally a tiled grid like F3DSF or DB-Grid, to any of the other VDB
configurations with more levels. For low resolutions, the flood-fill
of tall VDB configurations is orders of magnitude faster than the
shallow [10,3]. This is because at low resolutions the computational
bottleneck of [10,3] is the flood-filling of the large dense RootNode.
Finally, recall that [10,3] has an available resolution of only 8, 1923,
as well as large memory footprints (Table IV).

5.7 Constructive Solid Geometry

To evaluate Constructive Solid Geometry (CSG) we need two inter-
secting level sets. Table IX compares CPU times for CSG operations
between the Torus-Knot and the Stanford bunny, shown in Figure 8,
again set up as in Enright et al. [2002]. We include results for both
VDB and DT-Grid, but not F3DSF, since it lacks native imple-
mentations of CSG. Thanks to the hierarchical block partitioning,

Table VIII. Hierarchical Flood-Filling Times for VDB
Enright Active

Voxels
[7,6,5,4,3] [6,5,4,3] [6,5,3] [10,3]

5123 794,720 <0.01 <0.01 <0.01 1.87

1, 0243 3,189,240 0.01 0.01 0.01 1.93

2, 0483 12,784,621 0.06 0.06 0.05 1.99

4, 0963 51,033,829 0.22 0.22 0.21 2.17

8, 1923 203,923,476 0.88 0.87 0.85 2.85

16, 3843 815,936,095 3.45 3.45 3.38 N/A

CPU times in seconds for hierarchical sign flood-fill of a variety of VDB configurations
encoding the standard Enright dataset [Enright et al. 2002] at various effective data
resolutions.

Table IX. Comparing CSG for VDB and DT-Grid
[6,5,4,3] DT-Grid Union Intersection Difference

CSG@ 2, 0483/sec <0.01 0.37 <0.01 0.24 <0.01 0.36

CSG@ 4, 0963/sec 0.01 1.34 0.01 0.86 0.01 1.29

CSG@ 8, 1923/sec 0.03 4.60 0.02 2.46 0.03 4.53

CPU times in seconds for (grid-aligned) CSG operations on the Stanford bunny
and the Torus-Knot-Helix in Figure 8 using a DT-Grid and a VDB[6,5,4,3].

described in Section 4.3, which allows for fast node-based oper-
ations, VDB is several orders of magnitude faster than DT-Grid.

6. LIMITATIONS AND FUTURE WORK

While we have demonstrated several significant advantages of VDB,
it is obviously not a silver bullet. Most notably, it is not as memory
efficient for level set applications as DT-Grid. In Table II this dif-
ference is less than 1.5× for [Hash, 5, 4, 3] and is a consequence
of the fact that for most narrow-band level sets the nodes of VDB,
especially LeafNodes, are only partially full of active voxels. In
the future, we wish to explore two strategies to reduce the in-core
memory footprint: in-core compression and improved out-of-core
streaming.

The former amounts to runtime compression and decompression
of the dense LeafNodes, and the challenge is not to degrade ran-
dom access performance (as described in Appendix A, bit mask
compression necessitates sequential access). The idea would be to
efficiently prefetch, decompress, cache, and evict nodes based on the
access pattern. We hypothesize that this could eliminate the mem-
ory overhead compared to DT-Grid, however the variable sizes of
compressed nodes could lead to memory fragmentation over time,
possibly necessitating a custom thread-safe memory pool.

The other strategy is to further develop out-of-core streaming.
Currently, VDB supports deferred loading of voxel buffers, but this
simple technique is limited to read-only operations. To allow for
operations that modify both values and topology, we will need to
develop a much more complex out-of-core data structure, like the
one recently proposed in Christensen et al. [2011]. Interestingly,
the cache manager for runtime compression could potentially be
adapted for out-of-core compression as well.

Another limitation of VDB is that, despite the fact that it is a
hierarchical data structure, it is probably not the best choice for
multiresolution sampling, due to the large branching factors be-
tween levels of the tree. As such, a single VDB is not a general
replacement for octrees when optimal adaptivity is desired. To a
lesser extent the same is true for volumetric mipmaps, like the
brickmaps of Christensen and Batali [2004], that store LOD repre-
sentations in a single tree structure. Since tile and voxel values by

ACM Transactions on Graphics, Vol. 32, No. 3, Article 27, Publication date: June 2013.



27:20 • K. Museth

Fig. 10. Left: The “8x” variation of the Enright sphere [Enright et al. 2002], recently introduced in Christensen et al. [2011]. Where the original Enright
sphere uses a single sphere of radius 0.15 placed at (0.35, 0.35, 0.35) in a normalized unit box, this “8x” version uses eight spheres with radius 0.125 positioned
at (0.35, 0.35, 0.35), (0.15, 0.15, 0.85), (0.15, 0.85, 0.15), (0.35, 0.65, 0.65), (0.85, 0.15, 0.15), (0.65, 0.35, 0.65), (0.65, 0.65, 0.35), and (0.85, 0.85, 0.85).
Results are shown for an effective data resolution of 4, 0963 and a narrow-band width of 10, corresponding to 263,418,462 active voxels in the initial level set.
Right: Result of divergence-free advection at half-period, where the active voxel count peaks at 1,096,281,344 voxels!

design cannot overlap in index space, mipmapping is currently not
supported within a single VDB tree. However, preliminary work
has demonstrated that multiple VDB trees, each representing one
component in a LOD sequence of shader attributes, is an efficient
alternative to a traditional brickmap. Simularly we are optimistic
about a multi-VDB strategy for an elliptic multigrid solver.

7. CONCLUSION

We have presented a novel data structure and algorithms, collec-
tively dubbed VDB, that offer several advantages over existing
state-of-the-art sparse data structures for dynamic volumes. VDB
builds on B+trees and is analogous in several respects to the proven
design principles of memory management and cache hierarchies in
modern CPUs. Specifically, the VDB data structure consists of a
large or dynamically resizable root node, followed by a fixed num-
ber of intermediate node levels with decreasing branching factors
and small leaf nodes. Random access is significantly accelerated by
inverted tree traversal of cached nodes, which in turn is facilitated
by the fixed tree depth and branching factors. The main benefits
of VDB are fast and flexible random access, unbounded signed
index domains, support for arbitrary grid topology, small memory
and disk footprints, fast write times, adaptive sampling, hierarchical
CSG and flood-filling, efficient topological dilation and erosion, a
native acceleration structure, and fast sequential stencil access for
numerical simulations.

While we have benchmarked VDB against several existing data
structures, our performance comparisons focused on DT-Grid, since
it is the fastest and most compact existing data structure that supports
operations like sparse numerical simulations, CSG, and efficient
topology dilation. Our evaluations suggest that VDB can easily
be configured to outperform DT-Grid in all of these operations,
and it offers much faster random access. Equally important is the
fact that VDB can be used on virtually any volumetric data, not
just level sets, and it is more flexible since it also supports fast
random insertion and deletion. However, DT-Grid has a smaller

memory footprint. In essence, VDB trades some memory (<2×) for
additional flexibility (e.g., random insertion/deletion and adaptive
sampling) as well as significant improvements in computational
efficiency (4 − 35× for advection, >10× for spatially coherent
lookup, 3 − 4× write performance, 7× morphological dilation, and
>100× for CSG).

VDB is currently being applied to a large body of simulation,
modeling, and rendering problems at DreamWorks Animation, in-
cluding: cloud modeling, seamless volumetric fracturing, scan con-
version, adaptive mesh extraction, implicit surface fairing, morph-
ing, 3D compositing and CSG, brickmaps, elliptic pressure solvers,
fluid simulations, level set methods, GPU rendering of isosurfaces
and volumes for interactive previsualization, multiscattered volume
rendering, volume-based hair growth and grooming, particle advec-
tion, and collision detection. It is our hope that the open, source
release of VDB [OpenVDB 2012] will find as much use outside of
DreamWorks Animation.

APPENDIXES

A. OUT-OF-CORE COMPRESSION

The LeafNodes described so far are dense, in the sense that
each temporal buffer in the mLeafDAT contains exactly sSize
=1<<Log2X+Log2Y+Log2Z voxel values. However, when the vol-
ume is sparse, many LeafNode voxels may be inactive and set to a
fixed background value that need not be stored per voxel. For nar-
row band level sets, the memory overhead of storing these redundant
values can vary significantly with the width of the narrow-band, the
topology of the level set surface, and the LeafNode’s size. In gen-
eral it is desirable to keep the LeafNodes small, but a simple way
to reduce the footprint of partially full LeafNodes is to eliminate
the inactive voxels altogether, provided that they are restricted to a
small number of discrete values. This might not be practical for all
applications, though.

While we can readily design an encoder that removes inactive
voxel values from mLeafDAT, using the set bits in mValueMask, the
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same is not true for the decoder. For the simple case of a unique
background value associated with all inactive voxels, for example,
zero for density fields, we can trivially reconstruct the missing in-
active voxel values. However, for narrow band level sets there are
typically two values for the inactive voxels: a negative value for
voxels inside the narrow-band and a positive value of equal magni-
tude for voxels outside the band. In many cases, the level set surface
is physically realizable, that is, it is a closed manifold, in which case
the proper signs for inactive voxels can be derived efficiently via
the hierarchical flood-fill algorithm discussed in Section 4.6. For the
general case of nonclosed level sets, we can employ the optional bit
mask, mInsideMask (see line 11 of the code) to compactly encode
the inside/outside topology.

While we can sequentially access active voxels in compressed
LeafNodes, the same is not true for stencil or random access. For
those access patterns, LeafNodes typically need to first be decom-
pressed, though decompression can be incorporated conveniently
into the various caching schemes. Another more subtle issue with
runtime compression is memory fragmentation due to the chang-
ing sizes of the numerous mLeafDATs. One way to address this
problem is to allocate mLeafDATs from a memory pool, which also
improves performance by amortizing the cost of memory alloca-
tions. However, it is generally complicated to develop efficient and
thread-safe memory pools when allocating data of nonfixed size,
such as compressed mLeafDATs. For this reason and because any
runtime decompression would slow down nonsequential access, we
use this technique only for out-of-core compression during disk I/O
(see Section 5.4).

So far, we have only discussed the special cases in which there are
either one or two inactive voxel values, corresponding to the back-
ground or, for level sets, the exterior or interior. For the less common
case of an arbitrary number of inactive voxel values, we have to re-
sort to more generic compression techniques, like lossless RLE and
Zip, or lossy bit quantization, applied directly to the mLeafDAT.
Obviously, these compression schemes can also be applied to the
special cases discussed earlier, but as shown in Section 5.4, they
can be orders of magnitude slower than the bit-mask-based codecs.

Finally, it is easy to add support for out-of-core streaming by en-
coding file offsets into the LeafNodes, as in line 7 of the code. This
allows us to delay the loading of mLeafDATs until the voxel values,
rather than just the grid topology, are actually needed, significantly
reducing the in-memory footprint. This deferred loading is espe-
cially useful when rendering very large volumes that are culled by
a camera frustum or dominated by early ray termination.

In summary, LeafNodes can exist in several states, including
bit-mask- and/or Zip-compressed, bit quantized, or even out-of-
core. These different states are compactly encoded in the mFlags
(see Figure 5 and line 12 of the code) and can even vary among
LeafNodes belonging to the same tree.

B. MULTITHREADING AND VECTORIZATION

Performance on modern CPUs is influenced predominantly by three
factors: utilization of the cache memory system, the ability to dis-
tribute computation to multiple cores, and the degree of saturation
of the vector pipeline. A good data structure should be optimized
for all of these factors.

Cache efficiency of VDB is achieved through data locality. Since
most algorithms can be written to process whole LeafNodes at a
time, we process data more or less in the order they are stored in
main memory, which limits cache misses as long as the size of a
LeafNode doesn’t exceed the cache size of the CPU.

Whereas caching exploits memory coherency, vectorization takes
advantage of execution coherency. We can utilize the extended
SIMD instruction sets found in modern processors (e.g., SSE on
x86 hardware) when performing computation on both the voxel co-
ordinates and values. For example, lines 39–55 of the code involve
similar operations on the x, y, and z components of the global co-
ordinates. This means a runtime gain can be achieved by executing
those operations in parallel via a small number of SIMD instruc-
tions. The same is true for many of the floating point operations
used to update voxel values during numerical simulations, such as
the finite difference computations described in Section 4.2.

Finally, multithreading is essential to exploit the full poten-
tial of modern CPUs. Many algorithms, like the sequential finite-
difference schemes we use to solve level set equations, are trivial to
parallelize since they only modify voxel values, not grid topology.
The strategy is simply to distribute LeafNodes over multiple com-
putational threads, for instance by means of tbb::parallel for
in Intel’s open-source Threading Building Blocks library. The prob-
lem is slightly more complicated when dealing with algorithms
that modify grid topology, for example, when creating a new VDB
from other geometric representations like polygons or particles. In
short, the issue is that multiple threads might attempt to allocate
the same node or even modify the same byte in a bit mask, so
random insertion and deletion are not thread safe in VDB10. Again
the solution is simple and efficient: assign a separate grid to each
computational thread, then merge grids as threads terminate. (We
implement this type of threading with dynamic topolgy by means
of tbb::parallel reduce.) For level set applications like mesh
scan conversion and particle rasterization the merge operation is
typically a CSG union, which, as was discussed in Section 4.3, can
be implemented very efficiently since it operates directly on the
branches of a VDB tree. The memory overhead of this threading
strategy is also negligible as long as the spatial domains over which
the threads operate have little or no overlap. In other words, the
worst-case scenario would be if all threads performed computa-
tions over the entire grid domain. This might happen if one were
to rasterize a very high density of particles with a uniform random
spatial distribution, but this is rarely encountered in production and
can always be addressed by a fast bucketing of the particles into
the LeafNodes, leading to optimal spatial partitioning. In practice,
we often omit this bucketing step, yet we have still observed near-
optimal scaling in terms of memory and compute time.

All the algorithms discussed in this article are multithreaded
using one of these two simple techniques. The only exception is
the fast dilation algorithm in Section 4.1, which is memory-bound
rather than CPU-bound due to the fast bit operations and the slower
allocation/deallocation of nodes.
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