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Figure 1: Hair in motion.

Abstract

We present a hybrid direct and projective iterative algorithm for
simulating hair. The algorithm is fast, stable, visually accurate,
uses a comprehensive elasticity model with a well defined contin-
uum limit. The low resolution simulation is a good predictor of
higher resolution results which we attribute to our novel treatment
of bending and twisting forces. Timesteps may be as large a single
step for each frame of 24 Hz animation. The treatment of collisions
is implicit and does not introduce any artificial strain or forces.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling

Keywords: hair, rods, strands, collision, contact, friction, elastic-
ity

1 Introduction

Physically-based simulation of hair has important applications for
character animation and visual effects. Researchers have developed
methods for its simulation based on a variety of hair models [Ward
et al. 2007].

One of the models is Discrete Elastic Rods (DER) [Bergou et al.
2008] [Bergou et al. 2010], which is a discretization of the contin-
uum model of [Kirchhoff 1859; Langer and Singer 1996], extended

to stretchable rods.

Compared to other models, the existence of a well defined contin-
uum limit for discrete elasticity models ensures that users of the
system are able to set material parameters in an intuitive manner.
In addition the model allows a completely general specification of
the undeformed (stress-free) shape. Also, the model accurately cap-
tures the complexity of bending and twisting hair interactions.

1.1 Contributions

We present a method for the physically-based animation of collid-
ing hair. The main contributions of our paper are:

A novel treatment of bending and twisting forces in a discrete
elastic rod We introduce derivation of material curvatures (Sec-
tion 3.2) that produces a force response that is nearly linear with
respect to bending angle, greatly improving invariance with respect
to discretization sampling. Furthermore our model ensures that the
elastic energy Hessian is banded, symmetric, and semi-positive def-
inite for any configuration of the discrete elastic rod, thereby dou-
bling the efficiency of assembling and factorizing the linear system
via Cholesky decomposition. Additionally, the number of Hessian
terms is significantly lower than in prior work.

A novel and efficient algorithm for simulating hair’s elasticity
in conjunction with collision response and friction The algo-
rithm (Section 6) does not alternate between solving for elasticity,
and solving for collisions/friction. Instead, at each timestep the ap-
propriate normal and friction forces are determined by solving the
quadratic programming problem with an objective function deter-
mined by the internal dynamics and unilateral constraints arising
from non-penetration and friction conditions. User defined hair-to-
hair length constraints are solved along with the contacts.

Tightly integrating the treatment of internal dynamics and collisions
removes a possible source of visual inaccuracy since there is no
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need to limit strain rates during simulation.

A key ingredient of our algorithm is the banded Cholesky precondi-
tioner. By itself the preconditioner is a direct solver for the internal
dynamics. It is used in the combined elasticity and collisions solver
as a building block which is essential for the efficiency of the algo-
rithm.

2 Related Work

One of the earliest papers on hair simulation introduced the first
mass-spring model for hair and demonstrated its inherent scalabil-
ity [Rosenblum et al. 1991]. [Selle et al. 2008] extended the basic
model by introducing additional springs to account for hair twist.

Multi-body hair models [Hadap 2006] use a system of rigid bodies
connected by angular springs. The resulting articulated body dy-
namics problem is solved by applying Featherstone’s forward dy-
namics algorithm [Featherstone 1987].

A hybrid between a multi body and mass-spring system was in-
troduced in [Choe et al. 2005]. In this model rigid body links are
connected with linear as well as twisting springs.

Whereas the first systems for hair animation [Ward et al. 2007] em-
ployed coarse level models for hair, more recent approaches use
large scale, fiber level approaches [Selle et al. 2008; McAdams et al.
2009; Bertails-Descoubes et al. 2011; Daviet et al. 2011; Kaufman
et al. 2014] which results in much more detailed animation that cap-
ture complex collective behavior.

A widely used strategy for simulating colliding soft bodies is to
separate the treatment of collisions from that of internal forces. In
the system introduced in [Bridson and Fedkiw 2002] the veloci-
ties of the soft body are estimated first from the internal dynamics
alone and then the velocities are modified to account for the effect
of collisions, resting contacts and friction, but processing contacts
and collisions separately from internal forces can introduce artifi-
cial strain in the simulation results; a source of instability given the
typically large stretch stiffness required in realistic hair simulation.

[Baraff and Witkin 1998] pioneered the combined treatment of col-
lisions and elasticity by introducing a modified conjugate gradient
method that can solve for internal dynamics subject to equality con-
straints. [Choe et al. 2005] applies this method to the simulation of
hair.

One limitation of the modified conjugate gradient method is that
it can process only equality constraints rather than the unilateral
constraints required by collisions and friction. Substituting equal-
ity constraints for unilateral ones is problematic without a robust
method for determining when constraints should be activated and
released. Spurious large internal forces and sticking artifacts may
occur when constraints are wrongly considered as active. A very
informative illustration of these problems may be found in [Gold-
enthal 2010]. [Baraff and Witkin 1998] point out the difficulty of
determining the activation state of constraints due to the combinato-
rial nature of the problem: the correct activation state of a constraint
depends on the internal dynamics as well as the correct activation
states of the other constraints. Effective solutions to the problem
of determining exact Coulomb friction forces have been developed
in [Bertails-Descoubes et al. 2011], which introduced a nonsmooth
Newton algorithm, and in [Daviet et al. 2011], which combines a
nonlinear complementarity solver with an analytical fail-safe solver
to obtain a very robust system. [Kaufman et al. 2014] applies the
approach in [Daviet et al. 2011] to large-scale elastic rod assem-
blies.

3 Hair Model

Linear elasticity theory assumes that strains under consideration are
infinitesimal. The realm of hair deformation that we are interested
in is the motion of natural hair, with its embedded curls, cascading
around a character’s head, reacting as the character walks, runs or
jumps, or is blown by the wind. We expect the resulting deforma-
tions will have radius of curvature significantly greater than the di-
ameter of hair and satisfy the assumptions of linear elasticity. Prac-
tically speaking, one would need to intentionally fold and pinch a
hair in order for it to yield. (Note we’re speaking of a single hair vs.
the nonlinear behavior of a clump of hairs that will exhibit yielding
due to slipping and locking of a clump of neighboring hairs).

While some choose to model hair as a continua [Hadap 2001,
Bertails 2006], it’s standard to formulate some discrete representa-
tion of straight spans and accumulate curvature at joints where the
finite curvature is assumed to be distributed across the neighbor-
ing spans. We model individual hair strands using discrete elastic
rods [Bergou et al. 2008; Bergou et al. 2010] with some modifica-
tions. Rods are allowed to stretch, bend and twist but not shear, so
the continuum model is a generalization of the stretchable rods of
Kirchhoff’s theory [Kirchhoff 1859].

3.1 Discretization

Geometrically, a smooth elastic rod is represented as an adapted
framed curve, which consists of a centerline x(s) ∈ R3 and a ma-
terial frame [d0(s),d1(s),d2(s)] ∈ SO(3), where s is the coordi-
nate along the centerline.

The motion of the hair can be understood in terms of the change in
shape from the undeformed (stress-free) configuration x(s), dα(s)
to the deformed shape x(s, t), dα(s, t) at the current time t.

The centerline of the rod is discretized as a sequence of n + 2
vertices with positions [x0,x1, . . . ,xn,xn+1]. To each edge
ej

def
= xj+1 − xj , 0 ≤ j ≤ n + 1 corresponds an orthonormal

frame consisting of the material directors
ˆ
dj0 dj1 dj2

˜
. The

frame is adapted to the discretized centerline, i.e., one of the unit
vectors comprising the orthonormal frame is aligned with the tan-
gent to the centerline:

d2 = tj
def
=

ej

|ej | , (1)

where |ej | is the edge’s length.

Since the material frame must be both orthonormal and adapted to
the discretized centerline, it follows that the time evolution of the
material frame at an edge may be represented by just one scalar,
τ j , which is the angle that describes the incremental change in the
orientation of the first material director dj0(t), t0 ≤ t ≤ t0 +h rel-
ative to its orientation at the beginning of the simulation step. The
vector of generalized coordinates that describes the configuration
of a hair is then: q =

ˆ
x0, τ

0, · · · ,xn, τn,xn+1

˜
∈ R4n+7.

Note that in the interest of simplicity, we do not make use of any
reference directors in addition to the material directors.

Discrete Curvature and Discrete Curvature Binormal Vector
For an internal vertex i we define the discrete curvature as simply
the turning angle Φi between two consecutive edges:

Φi
def
= angle(ei−1, ei), 1 ≤ i ≤ n. (2)



This leads to the following expression for the discrete curvature
binormal:

(Φb)i = Φi
ti−1 × ti

|ti−1 × ti| . (3)

This choice for the discrete curvature ensures that for circle-shaped
elastic rods the bending energy is the same in the continuous and
discrete cases, for all n ≥ 3.

Discrete Material Curvatures When attempting to define the
discrete material curvatures at an interior vertex we encounter the
following problem: the discrete curvature κi is a vertex defined
quantity whereas the material directors di−1

α , diα, α ∈ {0, 1} are
defined at the neighboring edges. Simple averaging of the neigh-
boring edges’ reference frames, as done in [Bergou et al. 2010],
becomes increasingly inaccurate at higher bending and twisting an-
gles, and results in a null vector when there is a 180◦ twist in the
reference frame across the joint. To address this problem we obtain
interpolated material directors at vertices by spherical interpolation
of edge material directors:

d̃α,i = slerp 1
2

“
P

t̃i
ti−1d

i−1
α ,P

t̃i
ti
di
α

”
, (4)

where the parallel or zero-twist transport Pu2
u1 from a unit vector u1

to another unit vector u2 is the minimum angle rotation that aligns
u1 with u2.

Finally, the discrete material curvatures are defined as φα,i = d̃iα ·
(Φb)i. And discrete twist at the vertex θi is defined as the angular
difference of the adjacent material directors zero-twist transported
onto the joint.

3.2 Bending And Twisting Forces

The Kirchhoff theory of rods assigns an elastic energy to an adapted
framed curve from which internal elasticity forces are derived

F = −dE
dq

. (5)

The total elastic energy consists of three terms corresponding to
stretching, bending and twisting:

E = Es + Eb + Et. (6)

Each of these energy functions is defined in terms of scalar func-
tions that measure local deformations (strains). The derivation of
stretching forces is straightforward (e.g. [Bergou et al. 2010]). We
describe bending and twisting in detail below.

Derivation of Forces and Energy Hessian The internal bend-
ing and twisting energies for a joint centered around vertex i are
defined as:

Ebα,i =
1

2

kbα,i

li
(φα,i − φα,i)

2, α ∈ {0, 1}, (7)

Et,i =
1

2

kt

li
(θi − θi)2. (8)

Where the quantities k are stiffness constants which depend on the
hair’s material properties and geometry such as radius and eccen-
tricity. Local rest length li is computed as the average of adjacent
edge lengths.

Full differentiation of these energy expressions is an exhaustive ex-
ercise in derivation via the chain rule, and produces a relatively

large number of complicated terms, the evaluation of which adds
a significant cost to the total simulation time. More importantly,
some of the resulting energy Hessian terms lead to an indefinite
linear system which complicates their use in an implicit integra-
tion scheme. Numerical methods such as the generalized minimal
residual method could overcome such terms, but at some cost in the
subsequent squaring of the linear system’s condition number would
amplify convergence problems.

Identifying and separating indefinite terms is common and rela-
tively easy for the stretching energy Hessian, that becomes indef-
inite under compressive loading. But a similar treatment proved
much harder for the bending and twisting Hessian terms due to their
greater number and mathematical complexity.

We found a simpler approach is to include only the dominant terms
of the first derivative of the bend and twist energy. We exclude
terms that arise due to elongation or contraction of the edge and jus-
tify the exclusion by noting that the forces arising from the stretch-
ing energy are much, much greater than the excluded terms from
bend and twist. This greatly simplifies subsequent derivation of the
Hessian, and all resulting terms have been found to be semi-positive
definite.
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Figure 2: Joint with labeled vector quantities.

Differentiating the bending energy via the chain rule gives

∂Ebα,i
∂ej

=
∂Ebα,i
∂φα,i

∂φα,i
∂ej

. (9)

The first term is simple to calculate, but the second is not. Instead
we use vectors uji and vji of Figure 2 as approximations of the
partial derivatives of the material curvature angles with respect to
edge vectors,

∂φ0,i

∂ej
' uji =

“
ej × d̃0,i

” 1

|ej |2 βi, j ∈ {i− 1, i}, (10)

∂φ1,i

∂ej
' vji =

“
ej × d̃1,i

” 1

|ej |2 βi. (11)

We found the approximation introduces a small unbalanced torque
at high bending angles. While it only becomes apparent during tests
of free body (unattached) tightly curled hairs after many time steps.
To compensate, we employ the factor βi, a well behaved function
of turning angle Φi, that was determined by applying conservation
of angular momentum to a joint.

β(Φi) =
Φi
2

„
sin(

Φi
2

)

«−1

. (12)

Our resulting force and Hessian expressions have relatively few
components, making them easier to derive, verify, and ultimately
less expensive to use. Some examples are shown in appendix [A].
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Figure 3: Magnitude of the couple that must be applied at both
ends of a naturally straight discretized elastic rod to keep it in static
equilibrium while bent in the shape of a 270◦ arc for the model
in [Bergou et al. 2010] (blue) and our model (red).
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Figure 4: Variation of bending force with turning angle in [Bergou
et al. 2010] (blue) and our model (red).

Analysis of Force Model Because a discretization is represent-
ing an underlying continua, the resulting force model should ide-
ally be invariant with respect to choice of sampling. The invariance
should hold within some reasonable limits such as satisfying a min-
imum sampling rate or having sufficient degrees of freedom where
deformations are expected to take place. In our case, the sampling
choice is the count and placement of vertices, and simulation effi-
ciency benefits from the lowest possible resolution. This however
focuses curvature onto fewer vertices, each of which will experi-
ence higher discrete turning angles for a given total deformation of
a strand of hair. Thus we are particularly interested in the behav-
ior of a model at low resolution discretization. We would expect a
model’s total force response to be consistent for any choice of sam-
pling, and can thus evaluate correctness in terms of how well low
and high resolution discretization match. We also interpret the high
resolution behavior to be more correct because it better satisfies the
assumptions of linear elasticity.

Figure 3 shows the magnitude of the couple that must be applied
at both ends of a naturally straight discretized elastic rod to keep it
in static equilibrium while bent in the shape of a 270◦, for differ-
ent discretization rates. We see that both our model (red) and the
model of [Bergou et al. 2010] (blue) are self-consistent (and in fact
consistent with each other) but only at higher resolution upper half
of the vertex counts. In contrast, towards the lower end of the dis-

cretization, which again is of particular interest to practitioners, our
force remains virtually constant even down to the minimum vertex
count of three required to to represent a bent arc of hair. The other
model exhibits a strong dependence on discretization, due to their
model having a strongly non-linear force response with respect to
discrete bending angle.

This behavior is further detailed in figure 4 which shows the bend-
ing force for the reference case of two unit edge lengths and a ma-
terial director parallel to the binormal vs. the discrete bending an-
gle. As the upper limit of 180◦ degrees for that single joint is ap-
proached, their force response experiences unbounded growth. We
see that when starting from the elastic energy of Eq. 7, our model
obtains a bending force that most importantly remains bounded
over the entire domain of turning angles. The mild nonlinearity
is due to the correction factor of Eq. 12 which we feel is admissi-
ble, particularly when modeling a finite thickness material such as a
cluster of hair, however, evaluating the accuracy of the non-linearity
is beyond the scope of this current work.

Damping forces are derived in a similar fashion, starting from the
elastic energy expressions by differentiating with respect to both
position and time.

3.3 Hair-to-hair Constraints

Our hair animation system is used primarily for stylized hair. In this
context it is important to provide several ways for art directing hair-
to-hair sticking and separation. Soft constraints between vertices
on different guide hairs or belonging to the same guide hair may be
used in conjunction with Coulomb friction.

Constraints are modeled as damped springs that are biphasic in the
sense that the compression stiffness and damping may be different
from the stretching stiffness and damping. Optionally we allow the
stretching stiffness to diminish when the distance between the con-
strained points increases, to model the smaller resistance to separa-
tion of a hair clump with increased separation distance. In terms of
implementation, hair-to-hair constraints are handled together with
contact constraints, see Section 6.

4 Implicit Integration

Let qt =
`
x0, τ

0, · · · ,xn, τn,xn+1

´
and q̇t be the general-

ized coordinates and velocities, respectively, at time step t. The
corresponding quantities at the end of the previous time step are
qt−1, q̇t−1.

For integrating over time we use either implicit Euler [Baraff and
Witkin 1998] or implicit midpoint (see, e.g. [Hairer et al. 2006]).
We eliminate q̇t to directly relate the change in positions and angles
to forces and the force Jacobian. For implicit Euler:

M

h2

`
qt − qt−1´

=
M

h
q̇t−1 + f(qt, q̇t) (13)

where h is the time step and f are the internal elasticity, material
damping and gravity forces, and M is the mass matrix.

Since f depends non-linearly on q and q̇ we use several Newton
iterations for each timestep. Let qti and q̇ti = 1

h

`
qti − qt−1

´
be

i-th iteration estimates for qt and q̇t, respectively. As starting con-
ditions for the iterative process we set

`
qt0, q̇

t
0

´
=

`
qt−1, q̇t−1

´
.

Using a Taylor expansion of f we obtain the following linear system



of equations:„
M

h2
− ∂f

∂q
− 1

h

∂f

∂q̇

«
∆q =

− M

h2

`
qti−1 − qt−1´

+
M

h
q̇t + f +

∂f

∂q̇
q̇t (14)

where ∆q =
`
qti − qti−1

´
and the forces and their derivatives are

evaluated at
`
qti−1, q̇ti−1

´
. The corresponding equation for im-

plicit midpoint is:„
2M

h2
− 1

2

∂f

∂q
− 1

h

∂f

∂q̇

«
∆q =

− 2M

h2

`
qti−1 − qt−1´

+
2M

h
q̇t + f +

∂f

∂q̇
q̇t (15)

Collision detection and response (Section 6) as well as constraint
satisfaction is integrated within the implicit solver without alternat-
ing between them and the elasticity solve. Algorithm 1 is used for
advancing the simulation.

5 Banded Cholesky Factorization

A linear system of equations with a symmetric and positive definite
matrix A can be solved in a numerically stable and efficient way
using the Cholesky factorization A = LLT . The stability of the
Cholesky factorization follows from the fact that the elements of L
do not grow since they are tightly bounded by the diagonal elements
of A: L2

ij ≤ Aii, [Golub and Loan 1996]. Consequently, one can
avoid pivoting and its large number of memory-write operations
that may severely impact the run time efficiency of a system that
relies heavily on memory caches and multi-threading.

Note that we compute a complete Cholesky factorization. We rely
on the fact that the Cholesky factors of a banded matrix are them-
selves banded and have the same bandwidth. Here we use the
standard definitions for ”banded matrix” (see [Golub96]): entries
within a row that are further from the diagonal than the bandwidth
are all zero. In our case the bandwidth is a small constant (11)
regardless of the size of the problem

6 Collision

We detect and resolve hair to hair and hair to surfaces collisions.
We employ both static proximity detection with offset as well as
continuous collision detection without offset. Both detection types
are accelerated using an axis-aligned bounding box tree (AABB)
approach [van den Bergen et al. 1998]. The result of collision de-
tection is a set of candidate contact constraints.

Before we consider solving contacts as part of our full hybrid
solver, let us assume at first that we have only contact constraints
and no elastic forces. At the time of detection we compute the
following quantities for each contact: penetration depth p, normal
restitution vector n, and points of contact on either primitive ex-
pressed as barycentric weights βa and βb. We construct the follow-
ing linear system for the normal forces required to resolve the con-
straints over the given timestep (see [Baraff 1996] for the equality
constraints case):

h2

2
JM−1JTλ = p, λi ≥ 0. (16)

Once solved for lambda, the normal force corresponding to con-
straint j is computed as fnj = λjnj . Matrix J is the sparsem×3n

Algorithm 1 Single timestep of Hybrid Solver
O,T, S are the set of objects, the set of tasks and the number of par-
allelization pools (Section 8), max newton,max cbs,max lcp
are the number of Newton, Cholesky backsolve and LCP itera-
tions (Section 6), and A,b are the matrix and RHS of Equa-
tion (14).

1: for o in KinematicObjects(O) in parallel do
2: qt ← UpdatePositions()
3: bbto ← UpdateAABBTree(qt)
4: end for o
5: for i in {1, . . . ,max newton} do
6: for o in DynamicObjects(O) in parallel do

7: A←
„

M
h2 −

∂f

∂q
− 1

h

∂f

∂q̇

«
8: b← −M

h2

`
qti−1 − qt−1

´
+ M

h
q̇t + f +

∂f

∂q̇
q̇t

9: L← CholeskyFactorize(A)
10: bbto ← UpdateAABBTree(o)
11: end for o
12: {K1, · · · ,K|O|} ← ProximityDetection(O,q)
13: for o in O in parallel do
14: for k in Ko do
15: {p,n, β} ← BuildConstraint(q)
16: λ← 0,Ff ← 0
17: end for k
18: end for o
19: T← FindInteractingObjectPairs(K)
20: {T1, · · · ,TS} ← ParallelPartitionTasks(T)
21: for cbsitr in {1, . . . ,max cbs} do
22: for lcpitr in {1, . . . ,max lcp} do
23: for s in {1, . . . , S} do
24: for task in Ts in parallel do
25: o← TaskObject(task)
26: for k in Ko do
27: if IsIntraObjectContact(k) then
28: λk ← GaussSeidelUpdate(q, λ)
29: else
30: λk ← JacobiUpdate(q, λ)
31: end if
32: Ff ← EvalFriction(λ)
33: end for k
34: end for task
35: end for s
36: end for lcpitr
37: ∆q← CholeskyBackSolve(L,b, λ,Ff )
38: end for cbsitr
39: qti ← qti−1 + ∆q
40: end for i
41: qt ← qtmax newton
42: q̇t ← 1

h
(qt − qt−1)

43: return (qt, q̇t)

matrix encoding the m constraint’s inter-connectivity. A 1 × 3
blockwise element definition of J corresponding to constraint j and
vertex i is:

Jji = nj (βaji − βbji) . (17)

The linear complementarity problem of equations (16) is solved us-
ing the Projected Gauss-Seidel (PGS) method [Catto 2005], which
determines the active set of positive (pushing) non-zero normal
forces required to satisfy the constraints. However, the formulation
does not include internal elasticity forces, so the result of simply



solving the equation is local to the neighborhood of the constraint.

After the normal force has been found, the associated friction force
due to the contact is computed as:

ff = min
„

2

h2w
∆x, µλ

∆x

|∆x|

«
, (18)

where ∆x is the relative motion between the two points of the con-
tact, and w = 1

ma
+ 1

mb
is the sum of the inverse local masses

involved in the contact. Hence the first option of the minimum op-
eration represents the force required to completely arrest the motion
between the two points of contact. The second option represents
the maximum available friction force with coefficient of friction µ,
which is either the kinetic coefficient µk if the magnitude of relative
motion exceeds some small distance, otherwise we use the (larger)
coefficient of static friction µs.

7 Hybrid Solver

We developed a hybrid direct and projective iterative solver to si-
multaneously solve normal and friction forces for all candidate con-
tacts constraints as well as forces associated with user defined con-
straints (hereafter both shall be referred to simply as the set of con-
straints). Specifically we use Cholesky factorization and backsolve,
and a combination of Projected Gauss-Seidel (PGS) and Projected
Jacobi (PJ) solvers. While developed independently and in use for a
number of years on production feature films, our method does have
a number of similarities with the ADONIS algorithm of [Kaufman
et al. 2014] as well as some important differences which we will
point out.

Our hybrid solver is an iterative method for solving the following
quadratic programming problem arising from evolving the dynam-
ical state subject to both internal elasticity forces and contact con-
straints:

Minimize with respect to ∆q:
1

2
∆qTA∆q− bT∆q (19)

subject to: C∆q ≤ c, (20)

where A and b are, respectively, the LHS and RHS of Eq. (14) and
(C, c) express the non-penetration constraints as well as Coulomb-
type constraints on the magnitudes of friction forces.

Our solver as described in Algorithm 1 requires a single Cholesky
factorization of the elasticity matrix per Newton iteration. However,
prior to applying the Cholesky backsolve, we first solve the con-
straint equations for λ then compute the corresponding constraint
forces. Other than our use of Cholesky factorization, a major dif-
ference from [Kaufman et al. 2014] is that we couple the solution of
our iterative solve not by positional displacements, but by adding
the forces to the RHS of the Cholesky backsolve to find a new esti-
mate of the state vector (qt, q̇t) for this iteration.

The advantage of this approach is that the internal dynamics of the
hair remain paramount and we do not suffer undue strain of the
hair. There is of course a limitation in that the constraints may not
be fully resolved when termination is reached. In fact, we experi-
mented with various means of enforcing constraint satisfaction such
as a final PGS pass, warm-starting the PGS solve via tracking con-
tacts between iterations. While all of those helped to ensure con-
straints were satisfied, in practice they all suffer the same downside:
simulation jitter or outright failure in the presence of unsolvable sets
of constraints such as those that may arise from self-intersecting
collision geometry that one often sees in real world character sim-
ulations.
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Figure 5: The root mean square (left) of the distance between
the simulation result and the analytically computed elastica curve
(right), normalized to a rod of unit length.

8 Parallelization

The inclusion of hair to hair collisions and constraints make the par-
allelization of the algorithm difficult. Without them the system par-
allelization would be trivial since each hair would depend only on
its internal elasticity and collision against solid objects. We group
neighboring hairs together into an object of an appropriate size to
balance overhead and workloads, which in our case was found to be
around 1, 000 vertices per object. The collision detection and state
update can be computed independently for each object.

Inter-object and intra-object collisions are detected once per New-
ton iteration, while user constraints are given as inputs to the sys-
tem. From the list of constraints and contacts we generate a list
of all interacting object pairs. We then schedule using graph-color
partitioning to create a list of pools that will be run sequentially.
Each pool is a fully parallelizable list of task pairs. An object will
appear no more than once in each pool. A typical large hair sim-
ulation might have somewhere on the order of 10K contacts. Due
to the sparse nature of contacts and constraints, a contact typically
connects to a small set of neighbors. Consequently the number of
pools is relatively small, typically on the order of 10. Each pool can
be run in a fully parallel loop. All threads must synchronize prior
to beginning work on the next pool. To avoid stalling, the order of
object pair tasks is sorted in descending cost which is estimated as
the number of individual contacts or constraints between the two
objects.

The cost of scheduling is minimal, less than 1% of the overall bud-
get, and only needs to be recomputed after new collisions are de-
tected.

9 Results and Discussion

Elastica curve To validate our bending model we have com-
pared the output from the simulator with a known analytical so-
lution to the problem of static equilibrium of a continuous elastic
rod clamped at both ends (see Figure 5). The solution belongs to
the family of inflectional elastica curves, which have closed forms
expressible in terms of Jacobi elliptic functions and are labeled by
a continuous parameter m (see Section 13 in [Levien 2008] for de-
tails). In our case m = 7

10
.

Helical buckling The interaction between bending and twisting
is the cause of a number of instability phenomena. One of these is
helical buckling where a naturally straight rod clamped at both ends
and twisted maintains its straight shape for as long as the amount of
twist is smaller than a threshold value and buckles into the shape of



Figure 6: Top: Horse mane and tail. Down: Part of the mane is
constrained to follow the character’s hand.

a helix with variable radius past that threshold. Our model repro-
duces the correct behavior.

Collisions with surfaces In an animation scene, hair interacts
with character’s skin, clothing and other objects in the environment.
These objects are kinematic in the sense that, from the perspective
of hair simulation, their motion and shape deformations are pre-
scribed procedurally. In the scene shown in Figure 1 the collider
objects for hair are the character’s skin, dress, lute and floor boards.
Note that collisions are handled robustly although the character de-
sign is such that the neck, arms and body are all thin relative to the
size of the hair style.

Hair-to-hair collisions Hair-to-hair collisions with friction are
used to prevent volume loss and to model the sliding effects be-
tween different layers of hair. Collisions are detected between dif-
ferent strands as well as within the same hair. To ensure a robust
and stable collision response we use both vertex-edge and edge-
edge proximity detection to generate contacts.

Hair-to-hair constraints To generate the hair-to-hair constraints
(Section 3.3) we run proximity detection on the rest shape of the
hair. We set a maximum on the number of constraints a hair vertex
may belong to, the result is a network of constraints which in this
case purposely hold all the hairs in a cohesive mass. The stiffness
and damping parameters of constraints are usually set according
to the position of the constraint within the hair style, though as a
rule of thumb we found damping rates around 10% of the elasticity
stiffness give a natural look.

Figure 7: Long hair style scene.

Performance and scaling Table 1 details the performance of our
system in average milliseconds per frame for a variety of cases in-
cluding those depicted in Figures 1, 6, and 7. These setups encom-
pass a large range of vertices, constraints, and average contacts.
Given our use of a fixed iteration count, and the use of a direct
solver on the dense banded linear system, we see the expected av-
erage running time is O(n+m) where n is the number of vertices,
and m is the number of constraints and contacts.

Table 2 shows the performance of our system for a range of work-
loads and threads. In the case of a single thread, performance scales
roughly linearly with increase of vertices, this is even despite a
nearly quadratic increase in the number of contacts. However, as
the number of threads increases this efficiency diminishes. We at-
tribute this to the difficulty of parallelizing the constraint resolution,
but note that performance decreases to 75% scaling efficiency in the
case of 4 processors, and is still above 50% when utilizing 12 pro-
cessors.

Parallelization efficiency is best in the case with the heaviest work-
load (47K vertices), it ranges from 68% for four processors, and
drops to 37% on 12 processors. We attribute the difference be-
tween ideal threading efficiency to the non-trivial task of threading
so many constraints and contacts which in all test cases outnumber
the vertex counts by an order of magnitude.

Limitation The main limitation of our system is that the fixed
(user selectable) iteration count means we may not fully resolve
collisions in challenging cases. Conversely when there are no col-
lisions or constraints cycles are wasted since the the hair converges
in one iteration due to the direct solve.

Conclusions

We have presented an efficient and novel system for the simulation
of elasticity in conjunction with collision response, friction, and
user defined constraints. Our algorithm is a hybrid solver with the
advantage of a direct solver, it allows us to efficiently handle hairs
with high vertex counts. At the same time we also retain the ad-
vantage of a projective iterative solver enabling the processing of
high contact and constraint counts. The simulator has been used on
multiple feature film production for various types of hair.



Model Hairs Hair Points Colliders Points Constraints Average Contacts Average Frame Slowest Frame Average collision detection time
Penny 300 5,918 15,795 38,432 17,184 0.352 s 0.471 s 0.108 s
Penny (8x density) 300 47,456 15,795 95,397 423,937 1.547 s 2.180 s 0.407 s
Horse mane 243 2,430 10,534 6,015 1,118 0.109 s 0.123 s 0.37 s
Horse tail 45 450 10,534 4,485 433 0.082 s 0.091 s 0.33 s
Long hair style 256 6,400 6,850 19,060 30,517 0.304 s 0.482 s 0.111 s
Hair ball 32,030 960,900 72,000 0 273,216 204.3 s 688 s 31.04 s

Table 1: Timing results for simulations. Datasets Penny, Penny8x, Horse mane, Horse tail, Long hair used 8 substeps per frame and
cbs max = 3. The Hair ball dataset used 4 substeps per frame and cbs max = 12. For all data sets we set lcp max = 3,newton max =
2. ’Collider Points’ is the total vertex count over all collider objects. Results were measured on a multi-threaded implementation running on
a 3.07GHz machine with 12 cores.

Model Hair Points Constraints Average Contacts 1 4 8 12
Penny 5,918 38,432 17,184 739 ms 423 ms 392 ms 352 ms
Penny (4x density) 23,759 48,059 123,221 2,657 ms 1,067 ms 814 ms 766 ms
Penny (8x density) 47,456 95,397 423,937 6,882 ms 2,519 ms 1,824 ms 1,547 ms

Table 2: Parallelization performance. Results were measured on a multi-threaded implementation running on a 3.07GHz machine with 12
cores.
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A Bending and Twisting Derivatives
The formulation for internal elastic energy chosen in this paper results in compact ex-
pressions with relatively few terms for the first and second derivatives that are required
in the implicit solver. Below are select examples for derivatives used in the force and
torsion expressions that arise from one component bending energy:

∂Eb0

∂ej
=

j+1X
i=j

(−1)
i−j−1 kb0,i

li
(φ0,i − φ0,i)u

j
i ,

∂Eb0

∂τj
=

j+1X
i=j

kb0,i

li
(φ0,i − φ0,i)

φ1,i

2
.

Other terms are similar in form, such as for force and torsion due to twist energy:

∂Et

∂ej
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2

«
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∂Et
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j+1X
i=j

kt,i

li
(θi − θi).

The energy Hessian terms are also relative simple compared to derivatives used in other
approaches [Bergou et al. 2010]. Some example terms are shown below, for simplicity
and brevity the indexing and summations have been omitted:
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