Building highly parallel character rigs

Guido Zimmermann*
DreamWorks Animation

Abstract

DreamWorks Animation introduced a new parallel graph system,
LibEE [Watt et al. 2012] as the engine for our next generation
in-house animation tool. It became clear that we needed to make
changes in how we set up our character rigs for production.

The new graph engine has two types of multithreading: first indi-
vidual nodes are internally multithreaded, second the graph itself
can run nodes and groups of nodes in parallel. The second type in
particular turns out to give the greatest performance gains for the
evaluation of our characters. It is also the part that is determined by
the construction of the rig itself. To take full advantage of this new
system we needed to restructure our characters by enabling differ-
ent parts of the character to evaluate in parallel as much as possible.

This talk focuses on how we build our character rigs to improve
graph performance, including changes to workflows and strategies
required by our transition from serial to parallel graph structures.
Because our animation software engine is the first in the industry
to have a parallelized graph, many of these changes are novel, and
some were unexpected.

Motivation

The ultimate goal is for our characters to run in real-time at full fi-
delity inside the animation package. This is now possible to achieve
because the new parallel graph engine offers the potential for much
faster evaluation speeds. Creating character rigs that utilize the full
potential of the parallel graph is a key factor to achieve our goal.

Parallelizing the character setup

A typical character rig consists of a motion system that acts on a
skeleton which then is the base for a skin deformation system which
typically consists of multiple layers. We have additional systems
like face, hair, clothing and accessories. Under our old evaluation
engine all these systems ran in a serial chain. Parallelizing the char-
acter graph requires the combination of several rigging strategies:

Critical path optimization The critical path is the chain of nodes
that takes the longest time to evaluate, and it determines the over-
all evaluation time of the character per frame. By trying to bring
nodes outside of this path we are able to reduce the overall evalua-
tion time. For example if we find an expensive node on the critical
path we try to optimize that node internally or we try to change its
dependency in order to have it evaluate off the critical path.

Dependency ordering A node will be ready to evaluate once all its
inputs are available. By being smarter about the inputs we can make
it evaluate earlier. For example we found an expensive deformer
at the start of body deformations that needed to finish evaluating
before all other layers could start. By restructuring the systems
that this deformer requires to start we were able to have it and the
following nodes evaluate earlier. On a dragon for example it is
usually not necessary for wing deformers to wait for the tail motion
system to finish.

© DreamWorks Animation, L.L.C. 2014. This is the
author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive
version was published in SIGGRAPH 2014 Talks,
https://doi.org/10.1145/2614106.2614154.

Kevin Ochs'
DreamWorks Animation

Robert Helms?
DreamWorks Animation

Figure 1: Serial graph, converted to parallel graph

Serial chains in the graph In previous character setups we often
placed nodes in a serial chain even though they all required the same
inputs in order to run successfully. By restructuring these nodes we
were able to utilize graph parallelism to achieve significant reduc-
tions in critical path times. This technique was used to split up and
parallelize portions of the face system.

Bottlenecks of graph evaluation There are many examples in
character rigs where parts of the rig are combined and then reused
further down the graph. While this is a logical step from a work-
flow perspective, keeping them in their separate chains can greatly
improve the performance of those sections of the graph. We found
a significant bottleneck in the output of the motion system since we
tried to combine everything into one model before passing along
downstream. By immediately passing finished parts of the motion
system we were able to get some deformations start earlier. It was
also beneficial to avoid combining affectors for certain deformers as
that allows us more flexibility in how multiple inputs are handled.
This allows us to better leverage internally multithreaded nodes, al-
lowing deformation to begin earlier and complete more quickly.

Independent systems At a higher level we can identify and sep-
arate systems like the motion system, clothing etc. While certain
dependencies exist, for example the motion system of an arm needs
to evaluate before the arm can deform, we found ways to have some
systems run in parallel. This meant re-thinking how we connect
these systems to their upstream dependencies, and changing exist-
ing operators. As an example, a new operator was created to man-
age the connection of head to body. This allows us to have the face
run fully in parallel with the body.

Experience

The change has proved both challenging and rewarding for riggers,
who are now able to extract high performance from their rigs from
careful design of those rigs to expose as much parallelism as pos-
sible for the engine to exploit. This dramatically changes the com-
plexity and realism that can be built into the rigs, leading directly to
higher quality animated characters. Itis clear that the multi-core era
requires changes, not just from R&D, but also from those building
production assets in order to extract the full performance of current
and future hardware which will only increase in parallelism.

References

WATT, M., CUTLER, L. D., POWELL, A., DUNCAN, B.,
HUTCHINSON, M., AND OcHS, K. 2012. Libee: A multi-
threaded dependency graph for character animation. In Proceed-
ings of the Digital Production Symposium, ACM, New York, NY,
USA, DigiPro 12, 59-66.





