Time Travel Effects Pipeline in ‘Mr. Peabody & Sherman’

Robert Chen

Fangwei Lee

David Lipton

DreamW orks Animation*

Figurel. Various time travel shots from the film: Looking into a single tunnel, looking sideways from outside, and a tunnel that splits into two.

Abstract

In DreamWorks Animation’s Mr. Peabody & Sherman, our titular
duo travel back in time through magical wormholes (Fig. 2). We
needed a system that creates intricate and ethereal wormhole
tunnels, which were inspired by the mathematical fractal flame
images [Draves and Reckase 2008]. Yet, unlike fractal systems, it
needs to be highly art-directable and animated so the tunnels can
materialize, disintegrate, and branch off as the time machine travels
through them. The system also needs to be scalable in order to
create lots of tunnels in wide shots while maintaining details in
close-up shots. Due to the scale of the effect and its use across
multiple shots throughout the show, we’ve set up a pipeline for the
Layout, Animation, Effects, and Lighting departments to
collaborate on. The pipeline is divided into several stages, and as
artists advance through these stages, the look gets more refined:
from the broad strokes to the finest details.

,

Figure 2. Concept art

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object M odeling - Curve, surface, solid, and object
representations; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Fractals;

Keywords: production, animation, effects, fractal flames,
simulation, parallelization

© DreamWorks Animation, L.L.C. 2014. This is the author's
version of the work. It is posted for your personal use. Not for
redistribution. The definitive version was published in Digital
Production Symposium 2014,
https://doi.org/10.1145.2633374.2633383.

1. Planning the Route

The first stage of the pipeline involves planning out the path of the
wormhole tunnel. The Layout department, using a tool that we
developed, models out tree-shaped paths and aligns rings along
them (Fig. 3). This allows them to quickly preview the wormholes
and approve the camera (3.i) early on. The ring geometry is also

exported for the Animation department so they can tweak the
animation of the time machine.

@ % a) Normal

b) Normal SDF Isosurface

Point SDF Isosurface

d) Cross-section

R e) Cluster

f) Path Isosurface

e —
6-;\ g) Wormhole Path

h) Path Points
g——— i) Camera

Figure 3. Cross-section Diagram

The Effects department then takes these paths from Layout and
resamples them into points with equal intervals (3.h) and groups
these points into clusters (3.e) by calculating the point cloud
density. The clusters represent key tunnel features, such as
branching or merging.

We need to create the outlines of the tunnels by converting the
point clouds into isosurfaces. Yet, because the paths are very long,
it is too expensive to create a single isosurface with enough
resolution to mesh the entire tunnel, so we developed a method to
approximate the cross-sections of the isosurface. For each
individual point or cluster, we generate two isosurfaces: an
isosurface from the distance field of the points (3.c) and an
isosurface from the distance field of their normal planes (3.b). The
latter is approximated by summing the distance field of each
normal plane in the cluster with a smooth function. The
intersection of the two isosurfaces forms the cross-sections of the
path (3.d). We can preview the resulting tunnel outlines (Fig. 4) to
make any adjustments before we go into the next stage.



Figure 4. Wormhole tunnel outlines
2. Surface Membrane Generation

To create the “skins” of the tunnels with a membranous quality,
we use the wormhole outlines to emit multiple overlapping and
undulating surfaces. Since the profile rings (Fig. 5.a) are generated

from the cross sections of morphing isosurfaces, their topologies
are temporally incoherent. To address this, we resample them to a
fixed number of points. Using these points as emitters, we emit
particles (5.b) that are first advected by curl noise to create the
flaring motion, then further advected by the movements of the
rings to inherent the morphing motion. The particles are grouped
by their emission frames. For each particle in a group, we trace the
closest unique neighboring particle in the next frame group and
connect them by a line. The process is recursively repeated to
create a series of curves with consistent segments (5.c) that are
finally lofted into NURBS surfaces (5.d).

b) Particles

c) Curves

~—d) Surfaces

Figure 5. Surface creation

On average, a shot consists of hundreds of rings, and each ring

emits multiple overlapping surfaces (Fig. 1). It is obvious that the
processes have to run in parallel. Yet, the traditional single array
distribution for parallel jobs is not adequate for the complexity of
the system. Thus, we developed a dynamic 2D-array distribution
method where the tasks are first divided by the rings, and then
further divided by the surfaces, resulting in each machine only

simulating one surface for one ring at a time. When a ring splits

into multiple smaller rings, the system dynamically redistributes the
overlapping surfaces onto the smaller rings. Finally, at render time,
we load all of the data on disk and render them together, resulting

in a highly -efficient, massively parallel process with fast turnaround
time. Since we only need the surfaces for the amount of time they

are visible on screen, we can further optimize the system by
recording the frames at which each ring stays in the camera

frustum as a per-ring attribute, and use this information to
determine the frame range needed for the simulation on every ring.

3. Points Scattering and Rendering

To create the highlights and details found in the fractal flame
reference, we take the exported surfaces, scatter points (in the

order of hundreds of millions) on them, resize every point to the
width of a pixel, and allow overlapping points in screen space to
accumulate in brightness as we render them. This results in areas

of high density appearing with highlights in the folds and creases,
which then fade off smoothly into thin, fine lines in areas of low
density. (Fig. 6) For optimization, we calculate the screen distance
size of each surface to determine how many points to scatter.

Figure 6. Particles accumulate into fine lines

To give the illusion of a continuous tunnel without the actual wall
geometry, we need to occlude the points that appear behind the
walls. This is tricky since these “walls” are defined implicitly. To
solve this, we developed a reverse ray-marching technique: we
convert the profile rings into planes and shoot rays from the render
points back toward the camera. The rays need to hit all the planes
consecutively between the point and camera to be considered
“visible”. If any one plane is missed, that source point is
considered “occluded” and rendered darker, giving the impression
of being outside the tunnel. (Fig. 7)

Point A: Visible 4"

Camera

Figure 7. Top: reverse ray-marching diagram. Bottom: before and
after the occlusion treatment is applied



There are several reasons why we chose to convert the surfaces

into points instead of rendering the surfaces directly. The renderer
we used is specialized in rendering massive amount of points much
faster than rendering multiple overlapping and semi-transparent
surfaces, and easily gives us the look that we were aiming for

without needing to build any custom shaders. Furthermore,
working with points gives us greater control to easily implement
tunnel interior culling, camera frustum culling, and reverse

ray-marching occlusion, all of which would have been more

difficult to implement with surfaces.

A lot of shots have wormhole tunnels in the background. Since
these tunnels do not require as much detail as the foreground ones,
we use a faster technique to render them. We first simulate and
bake out a generic set of undulating NURBS surfaces. Then, using
the delayed load instancing feature from the Mantra renderer, we
instance these surfaces along the background path curves and
offset the animation of each instance by a random frame. This
technique is both fast and memory efficient, allowing us to render
many background flares quickly.

4. Compositing

To do color adjustments by the depth of the tunnel, we cannot
simply change the point color in 3D space and render them every
time since that is too slow. Additionally, because each pixel may be
the result of multiple accumulated particles in depth, we can’t rely
on the depth channel from the render. Given all this, we instead
render out a “depth map” of the tunnel by combining the inverse of
all the profile ring planes and assigning a normalized depth value to
each plane (Fig. 8a). Using this depth map as a mask in Nuke, the
artists are able to do depth grading on the color by adjusting the
lookup curves for the depth map (8.b). This method significantly
reduces the turn-around time since the depth grading is done
interactively at the compositing stage (8.c).

Figure 9. Different stages in compositing

Various other render passes are brought in to composite the final
image. The occluded pass and the unoccluded pass are graded
separately so the artist can differentiate the interior and the exterior
of the tunnel. The profile rings are composited in to make the
tunnels more well-defined. Laplacian operation is applied to further
bring out the highlights in the render. Finally, optical tricks such as
lens distortions and lens flares are added in to give the wormhole
more life and energy.

5. Integration with Lighting

After the time travel wormholes are rendered and composited, we
hand off the layers to the Lighting department so they can
composite it with the time machine, which is rendered by Lighting.
The time machine has a glossy exterior on which Lighting needs to
reflect the wormhole tunnels. However, since Effects is rendering
all the environment, we need an efficient way to hand those data
off to Lighting for reflections. The traditional method of exporting
point-based global illumination particles is insufficient since it does
not produce enough visual fidelity. Instead, we use a cube mapping
approach by rendering from six cameras that are parented to the
time machine (Fig. 10.a), each with a 90 degree frustum facing an
orthogonal direction. We then stitch the images together in Nuke to
produce the reflection maps that Lighting can use. (10.b)

Figure 10. Using cube mapping to produce the reflection map.
6. Conclusions

By combining a mix of proven solutions, new techniques and
optimizations, we developed a system that integrates multiple levels
of complexity through several pipeline stages to create a unique
and successful overall effect without actually using fractal
formulas. Because of this, the effect is highly controllable, scalable,
and allows various departments across the pipeline to work in
unison. Some of the tools developed here, such as flares instancing
and cube mapping, are further used in other effects such as the
black hole sequence where thousands of flares have to be rendered
and reflected on screen.

References
DRAVES, S. AND RECKASE, E., 2008. The Fractal Flame

Algorithm. http://flam3.com/flame_draves.pdf.
[Online; accessed 16-M ay-2014].


http://www.google.com/url?q=http%3A%2F%2Fflam3.com%2Fflame_draves.pdf&sa=D&sntz=1&usg=AFQjCNEFeDEaXPpGXiRa5wi2Xg63tYazLA

