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Figure 1: This scene of Poppy singing is from the opening sequence of the movie “Trolls”. We have rendered it here with MoonRay, our vectorized
production path tracing system. The scene uses over 7 GB of geometry with 9.1 million curves, and an average of 20 control vertices per curve; the
characters have complex shading networks and use around 1.3 GB of unique textures. The SIMD utilization provided a 5× speedup for the shading
and a 3× speedup for the path integration portions of the frame.

ABSTRACT
This paper presents MoonRay, a high performance production ren-
dering architecture using Monte Carlo path tracing developed
at DreamWorks Animation. MoonRay is the first production path
tracer, to our knowledge, designed to fully leverage Single Instruc-
tion/Multiple Data (SIMD) vector units throughout. To achieve high
SIMD efficiency, we employ Embree for tracing rays and vectorize
the remaining compute intensive components of the renderer: the
integrator, the shading system and shaders, and the texturing en-
gine. Queuing is used to help keep all vector lanes full and improve
data coherency.We use the ISPC programming language [Intel 2011;
Pharr and Mark 2012] to achieve improved performance across SSE,
AVX/AVX2 and AVX512 instruction sets. Our system includes two
functionally equivalent uni-directional CPU path tracing imple-
mentations: a C++ scalar depth-first version and an ISPC vectorized
breadth-first wavefront version. Using side by side performance
comparisons on complex production scenes and assets we show
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our vectorized architecture, running on AVX2, delivers between
a 1.3× to 2.3× speed-up in overall render time, and up to 3×, 6×,
and 4×, speed-ups within the integration, shading, and texturing
components, respectively.
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1 INTRODUCTION
Over the past decade, research in high performance path tracing
has greatly reduced the cost per ray and the time to build efficient
acceleration structures [Ernst and Greiner 2008; Parker et al. 2010;
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Figure 2: “Trolls” environment Bergen Town, Astrid and an environment set piece called Hotspur from the movie “How to Train Your Dragon 2”,
rendered with vectorized MoonRay. Bergen Town uses over 360 MB of geometry mostly consists of subdivision meshes and 1.1 GB of textures;
Astrid uses over 1.67 GB of geometry and 1.34 GB of textures; Hotspur uses 1.38 GB of geometry and 11.1 GB of textures. Astrid’s hair alone has
over 100K curves with an average of 45 control vertices per curve. There are over 3.5 million curves for Astrid’s entire setup including hood fur,
arm band fur, fur on her dress and soft skin fuzz, eyebrows and eyelashes. Vectorized MoonRay delivers a 1.6× to 2.3× speed up on total render
time for these 3 scenes, with performance gains in shading, texturing and integration ranging from 2× to over 4×.

Wald 2007; Wald et al. 2014]. During the same period, large im-
provements in hardware have vastly increased the number of CPU
cores and the amount of memory available on commodity hard-
ware. This overall increase in computational power has enabled
production rendering systems to move away from the rasterization-
based Reyes architecture [Cook et al. 1987], and evolve towards
physically-based path tracing algorithms, the most commonly used
approach being uni-directional path tracing [Kajiya 1986] with next
event prediction [Pharr et al. 2016].

Path tracing is an inherently parallel algorithm and path tracing
renderers have been able to exploit the growing number of CPU
cores with relative ease. Each of these cores however devotes a
non-trivial on-die area to supporting the vector (SIMD) processing
of data. This should allow significantly higher throughput in theory,
orthogonal to gains from multi-threading. However, no production
renderer to date has been designed to exploit vector hardware
throughout the whole system. So although path tracing itself is
trivially parallelizable, unfortunately, it is not trivially vectorizable.
In the context of a CPU based production renderer, the quest for full
vectorization raises many questions... How do we access the vector
hardware effectively? How do we map the path tracing algorithm
into this domain whilst maintaining the flexibility required for
production? How do we gather batches of work to keep the vector
hardware busy? How do we keep memory accesses coherent and
avoid scatters and gathers? How do we minimize vector code flow
divergence? And if we do satisfactorily solve these problems, the
question then becomes: do the potential performance benefits gained
outweigh the extra work required to harness the vector hardware?

The main contribution of this paper is an attempt to shed light
on these questions. In doing so, we introduce MoonRay, which to
our knowledge, is the first full featured film production renderer
designed to leverage SIMD vectorization throughout the whole
system. We give an overview of the scalar and vectorized variants
of MoonRay in Section 3.

In addition to being fully vectorized, MoonRay uses various op-
timization techniques commonly used in the games industry to
achieve additional speedups. These include applying Data Oriented

Design principles [Acton 2014] and a somewhat constrained ap-
proach to thread locking and memory allocation. It’s worth clari-
fying that these optimizations are orthogonal to any vectorization
speedups, and so benefit the both scalar and vectorized variants of
the renderer. We elaborate on these details in Section 4.

In Section 5 we describe the underlying building blocks used
to facilitate vectorized processing, in particular our approach to
queuing and sorting the rays/samples, and the array-of-structures
(AOS) to structure-of-arrays (SOA) transposition system we use to
map each of these onto its own dedicated vector lane.

Embree [Wald et al. 2014] is employed for all ray intersections,
which is already well vectorized internally. We have identified 3
additional components where a significant percentage of render
time is spent, and are amenable to vectorization: shading, texturing,
and integration. These are the areas we’ve specifically focused on,
such that a single ray or sample is mapped to a single vector lane
throughout. In Section 6 we cover the design and implementation
specifics of each of these.

Finally, in Section 7 we provide detailed performance compar-
isons between our scalar and vectorized implementations of the
renderer.

2 PREVIOUS WORK
Much essential work has been devoted in the past decade to ac-
celerating ray tracing [Ernst and Greiner 2008], to handling curve
primitive ray traversal and intersection [Nakamaru and Ohno 2002;
Woop et al. 2014] and to quickly building good quality acceleration
structures [Wald 2007]. Many papers also focused on accelerating
the tracing of incoherent rays [Aila and Karras 2010], either via
SIMD single ray traversal [Wald et al. 2008], packet tracing [Benthin
et al. 2012; Garanzha and Loop 2010] or ray stream tracing [Hobe-
rock et al. 2009; Tsakok 2009]. The OptiX ray tracing engine [Parker
et al. 2010] provides a high performance ray tracing API for GPU
architecture, whilstMoonRay uses Embree [Wald et al. 2014], which
has state of the art ray tracing kernels with good SIMD utilization
for single ray, ray packets and ray stream tracing computation
on the CPU. As a result, our performance focus on MoonRay is
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Figure 3: Conventional path tracing on the left vs. vectorized path tracing on the right. The various queues in the vectorized implementation
can be seen on the above right. All queues with the exception of the shade queue are thread local and allocated per thread. Each queue has an
associated “handler”, represented by dashed lines to gray boxes, which process the entries in a queue after it fills up. Each handler can add further
entries to other queues, as indicated by the solid black lines. All of the shading, texturing, and integration takes place inside the of the Shade
Queue Handler.

on accelerating all the other components needed in a production
path tracing system, using coherent rendering and vectorization
techniques.

Coherent rendering for ray tracing was introduced by Hanra-
han [Hanrahan 1986], and further developed by Pharr et al. [Pharr
et al. 1997]. It is a necessary step in attempting to achieve good
memory locality of reference and enable optimizations relying on
caching coherence, among others. To this end, there has been much
work in hybrid rendering systems [Pantaleoni et al. 2010] that rely
on spatial sorting, level of detail (LOD) selection and streaming
in order to efficiently pre-compute spherical occlusion of out-of-
core scenes on the GPU. Similarly, Kontkanen et al. [Kontkanen
et al. 2011] performs clustering of spatial subdivision data structure
nodes into coherent sub-trees, to accelerate the out-of-core traver-
sal algorithm used in computing point based global illumination.
More recently, Disney’s Hyperion [Eisenacher et al. 2013] demon-
strated good geometry and texturing coherence via ray and hit
point sorting, however their work does not exploit data parallelism
or vectorization.

Laine et al. [Laine et al. 2013] describe a Single Instruction/Multiple
Threads (SIMT) wavefront path tracing approach on the GPU, in
order to reduce the divergence and register pressure encountered
when naively executing large path tracing and shading kernels.
Their system shows great promise when executing vectorized com-
plex material shaders, but lacks many abilities of a production
rendering system. Iray [Keller et al. 2017], which is built on top of
OptiX, demonstrates what a more fully featured path tracer might
look like in the GPU domain. In the work perhaps most closely
related to ours, Áfra et al. [Áfra et al. 2016] study the impact of hit
point sorting and ray batch sizing to reduce CPU SIMD divergence
in manually vectorized shaders. Their system achieves high SIMD

utilization similar to ours while rendering complex scenes. Our
system extends this general type of approach to the whole ray-
tracing pipeline and also supports a number of additional features
which are essential for production rendering such as path splitting
with Russian Roulette [Vorba and Křivánek 2016], out-of-core mip-
mapped lazy texture access based on ray differentials [Gritz 2007],
and arbitrary shader graphs assembled at runtime.

3 OVERVIEW
MoonRay is a production renderer that supports subdivision sur-
faces, polygonmeshes and curve primitives. It can coherently access
very large amounts of out-of-core texture data, using UDIM UV
mapping [Seymour 2014] and mip-mapping driven by ray differen-
tials tracked along each path. MoonRay has a complete procedural
plugin API for rendering application, geometry procedural and
surface shader development. We have used these APIs to develop
fur/hair geometry procedurals, Alembic [Imageworks 2017] load-
ers and a complete set of lights, materials and texture shaders for
feature animation.

Image generation in MoonRay is separated into two distinct
phases which we will refer to in the remainder of this paper:

(1) The preparation phase is where we initially load the scene
description, load and generate geometry assets by running
procedural plug-ins, build the ray tracing acceleration struc-
tures and setup other data structures required for rendering.

(2) The rendering phase is where we compute pixel values by
tracing paths, running shaders and executing Monte Carlo
sampling and integration calculations at every ray hit along
the paths. This is the compute-intensive phase, which is the
focus of our vectorization architecture.
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Conceptually, the rendering phase proceeds as follows. The im-
age is partitioned into small square pixel buckets from which pri-
mary rays leaving the camera are computed and traced through
the scene. Ray hits trigger the execution of a pre-assigned surface
shader. The latter returns a Bsdf closure to the integrator, which
contains a list of Bsdf lobes describing an arbitrarily complex sur-
face or curve reflectance model that can be importance sampled.
A pre-assigned light-set which can also be importance sampled is
looked up, describing the full list of lights affecting the given ray
hit.

The integrator then performs sampling decisions and calcula-
tions. We build upon robust uni-directional path tracing techniques
using next event estimation of direct illumination and multiple
importance sampling (MIS), combined with path splitting and Rus-
sian Roulette [Veach and Guibas 1995]. In our implementation,
paths are split into sub-paths based on explicit user control and
the paths with low importance are culled in a statistically unbi-
ased way. Samples that pass the culling are traced further into the
scene, either for testing occlusion or for continuing paths leading
to path tracing recursion. Path splitting and Russian Roulette work
hand-in-hand to semi-automatically adjust the sampling density
when estimating parts of the high dimensional integral in various
areas of the scene. This typically leads to a sizeable sample culling
rate and consequently an increased percentage of time spent in the
integrator.

MoonRay contains two fully functional implementations of the
aforementioned path tracing algorithm as illustrated in Figure 3.
The scalar code-path uses parallel processing of pixel buckets and
each thread traces paths depth-first all the way with explicit recur-
sion, before the next camera sample is processed. The vectorized
code-path, on the other hand, processes batches of samples in wave-
fronts in breadth-first order, using multiple queues to track ray
state. Queue entries are processed in parallel, which leads to adding
entries into down-stream queues. To avoid dependencies between
queues, the vectorized breadth-first implementation is a fully feed-
forward pipeline and radiance contributions are decomposed as
described in Pharr et al. [Pharr et al. 1997]. ISPC [Intel 2011; Pharr
and Mark 2012] is a C-like language from Intel which makes it
easier to write code targeting SIMD hardware. It hides the details
of the underlying vector instruction set and internally generates
the necessary code to handle control flow masking. Both the scalar
and vectorized code paths execute the same overall computations
and produce identical results. These side-by-side implementations
prove essential to accurately compare the performance implications
from different architectural decisions related to vectorization.

4 ARCHITECTURE AND SYSTEM DESIGN
The general philosophy underlying MoonRay’s implementation is
to maximize the usage of available hardware resources, by keep-
ing all vector lanes of all cores busy all the time with meaningful
work. It reflects a devotion to raw performance, without sacrific-
ing functionality or usability. This section describes some of the
implementation choices which resulted from this mindset.

4.1 Data Oriented Design
Data oriented design (DOD) is a term which has been gaining pop-
ularity in recent years [Acton 2014]. Whereas an object oriented
approach might focus on how to decompose the problem in terms
of high level abstractions, a data oriented approach looks at how
the problem can be efficiently mapped to the underlying hardware.
Approaching the ray tracing problem through a data oriented lens
informed many of our architectural decisions. Common proper-
ties of the platforms we target (Xeon and Xeon Phi class CPUs)
include multiple cores, wide vector execution (SIMD) capabilities,
and relatively long memory latencies. Under the constraints of a
mismatch between high speed compute and slow memory access,
DOD principles advocate focusing on how data is accessed and
transferred. Consequently, we strive for careful data structure lay-
out and controlled memory access patterns, avoiding randomly
accessing memory where possible.

Another key tenet of DOD is where there is one, there is usually
more than one, or more plainly, we should work in batches where
possible. This is a common theme throughout the system imple-
mentation and has a profound impact on the overall architecture
and the API choices we made.

4.2 Threading Considerations
Our approach to multi-threading during the preparation phase is
to use Intel’s Threading Building Blocks library [Intel 2010] (TBB),
which gives us a convenient way to express task based parallelism
and nested parallel loops.

For the rendering phase, we strive to achieve linear scalability
with respect to core count. One of the primary causes prevent-
ing each core from running at 100% is lock contention. Therefore,
aiming for 100% core utilization would imply getting rid of all poten-
tially contentious locks. Although perhaps not entirely avoidable
in practice, this serves as a valuable guiding principle.

Avoiding contentious locks has a couple of big implications. First,
we aim to avoid heap allocations since they potentially cause global
locks. From a development point of view, this led to curbing the
use of Standard Template Library (STL) containers in the codebase
unless we can ensure they are immutable in the rendering phase.
By confining allocations to thread-local arenas [Pharr et al. 2016] or
pre-allocated thread-friendly memory pools, we are able to avoid
practically all stalls related to memory allocation.

Next, we strive to minimize thread-to-thread communication.
Fortunately, the nature of path tracing allows us to treat each thread
as an independent worker, so using TBB task based parallelism
would be overkill here. Instead each thread simply runs in its own
loop, pulling batches of primary rays from a shared work queue.
To further minimize thread communication, we make heavy use
of thread local storage (TLS) objects. These are structures which
are only accessible by a single thread and so can be read from and
written to freely without any locks. Typically, each thread will only
reference read-only shared data, and its dedicated TLS object. TLS
objects are assigned to each thread at the start of the render loop
and passed down via the stack such that any function which needs
access gets it passed in as a parameter.
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5 QUEUING AND SORTING
The core idea underlying the vectorization performance improve-
ment is that instead of processing a single work element at a time
(be it a ray or shading sample), we can potentially process 4, 8, or 16
work elements simultaneously. This is accomplished by mapping
each work element to its own dedicated vector lane, 4 for SSE, 8
for AVX/AVX2, or 16 for AVX-512. There are some fundamental
hurdles to this style of processing however. First we need to be
able to gather enough work elements together so all vector lanes
are filled. This amount of work is not readily available when using
depth-first path tracing, and so prompts the move to a breadth-first
approach [Eisenacher et al. 2013; Hanrahan 1986; Pharr et al. 1997],
as is more typical in GPU path tracing implementations [Parker
et al. 2010]. Queuing is the mechanism we use to gather batches of
work for vector processing.

Once we have enough work to fill the vector lanes, we want to
sort these entries to maximize memory access coherence: when we
fetch data from main memory we want to maximize its use before
its subsequent eviction. Additionally, SIMD divergence in the code
path as we process work elements is another hurdle which must
be countered by actively ensuring the various inputs are relatively
coherent. The queuing and sorting of data helps here also.

After sorting, we convert queue entries from array-of-structures
(AOS) format to structure-of-arrays (SOA) format to facilitate this
separate work element per lane model of execution whilst minimiz-
ing costly scatter and gather memory access operations.

5.1 Queuing
A queue in this context is not first-in-first-out (FIFO) but rather an
area where we can gather units of work for later processing. Each
queue has an associated function callback called a handler which is
responsible for processing the rays or samples queued up (which
we’ll generically refer to as queue entries). We use the term “flush”
to denote the following operations on a queue:

(1) The entries are copied into a temporary arena allocated
buffer and the queue is restored to an empty or near empty
state (the number of entries actually removed is a multiple of
the vector lane width to maximize SIMD utilization). Other
threads can continue adding entries at this point.

(2) The copied entries are sorted as described in Section 5.2.
(3) The sorted results are sent to the associated queue handler

for processing.

All queues are pre-allocated before rendering starts to a known
but configurable size. To minimize thread contention, all queues are
thread local, except for shade queues for reasons described below.

Only rarely do we add single entries at a time to queues. To
amortize queuing costs, we build up batches of entries and add them
to the destination queue with a single call. This general approach
applies to all queues in the system.

A queue is flushed when a thread adding entries causes that queue
to exceed its pre-configured maximum size. That thread then becomes
responsible for flushing the queue there and then before proceeding.
It’s possible that calling the handler to process queued entries could
cause a different queue in the system to fill up, in turn causing its
handler to be invoked, and so on. We can think of this chain in

Table 1: Details of how we configure shade queue sort keys. Artists
may link arbitrary lights to arbitrary geometry during the content
creation phase. At runtime we use this information to partition the
lights in the scene into subsets which we refer to as light-sets. Only
one light-set can be attached to any single hit point and so it can
represented as a simple index. We sort by this light-set index first to
help to minimize code flow divergence in the integrator. Next we sort
by UDIM tile, typically we use 10x10 UDIM grids [Seymour 2014] so 7
bits is sufficient here. Finally, we sort based on mip level, followed by
morton encoded uv coordinates. All of these separate sort criteria are
encoded into a single 32-bit integer.

Bit location Contents Number of bits
25-31 light-set index 7 bits = 128 light sets
18-24 UDIM tile 7 bits = 128 tiles
14-17 mip level 4 bits = 16 mip levels
0-13 uv coordinates 14 bits = 16,384 tiles

terms of a stack. By applying this rule, an autonomous scheduling
falls out naturally and no central queue scheduler is required.

If a thread finds itself with a fully unwound stack, meaning it has
no further work left to do, it asks a shared work queue for the next
batch of primary rays to process. As the frame nears completion
and there are no more primary rays left to process, each thread will
enter a queue draining phase, where it manually flushes queues
even though theymay be only partially filled. Load balancing during
this phase is achieved by having each thread flush its local queues
first before moving onto flushing the shared shader queues, which
may cause more entries to be inserted into local queues. This cycle
is repeated until all queues are empty at which time the frame is
marked as complete.

There are multiple queues in our system as illustrated in Fig-
ure 3(b). Notice that this graph contains a cycle between the “In-
coherent Ray Queue” and the “Shade Queue” handlers. This cycle
models the recursive aspects of path tracing in the system.

The primary ray queue and incoherent ray queue are separate
since we generate primary rays based on screen space tiles, and
so can assume a certain amount of coherency. Mixing incoherent
rays into these queues would serve to slow down the primary
ray intersections. The occlusion ray queue is also separate since
it is processed in Embree using a completely separate code path.
Radiance writes, although implemented via atomics, are still queued
to minimize thread contention for shared frame buffers.

Shade queues are the only queue type which are shared between
threads. One queue is allocated for each individual shader instance
in the scene, which ensures a baseline coherency when shading
samples. The tradeoff with introducing any shared queues into
the system is that it increases the likelihood of thread contention.
We decided this was worth it however due to the memory savings
of only needing to allocate a single shade queue per-shader, as
opposed to one per-shader, per-thread.

5.2 Sorting
A “sort key” determines how entries are sorted when flushing a
queue. Most queues in the system take 64-bit entries composed of
a 32-bit sort key and a 32-bit payload reference. The queues are
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Figure 4: Illustration of AOS to AOSOA transposition. Assume that A,
B, C, and D are four 16-byte AOS structures scattered in memory. They
have been prefetched by an earlier iteration of the AOS to AOSOA
loop such that they are now resident in the local L1 or L2 cache. From
there, they are loaded into SIMD registers (SSE in this case), where
in-place transposition is performed using SIMD intrinsics. The result
is an AOSOA packet ready to be consumed by an ISPC kernel.

sorted with a radix sort algorithm using a less-than comparison
of the entries’ sort keys. Sorting the queue therefore only needs
to access a single contiguous block of memory where these 64-
bit entries reside. Radix sort inherently touches this memory in a
sequential manner making the sort very fast. Furthermore, since
not all queue types will use all the bits in a sort key, we can optimize
by running specialized versions of the sort according to the number
of significant bits actually used. Currently we support separate
variations of the algorithm for 11, 22, or 32 bits.

The sort key contents are context specific to the type of queue
we’re sorting. Table 1 describes how we configure shade queue
sort keys. As a result, when flushing a given shade queue, each
required texture tile will typically need to be fetched only once as
we progress through the entries.

Profiling shows that queue sorting takes on average about 1.5%
of the rendering phase.

5.3 Efficient AOSOA transformation
To make best use of ISPC, inputs should be fed to it in either SOA or
array-of-structures-of-arrays (AOSOA) format; please refer to [Intel
2011] for details. We chose to go with AOSOA since it provides
better data locality than SOA for our use cases. The AOSOA stride
is matched to that of the vector instruction set we’re targeting, so
for example, on AVX, we use an AOSOA stride of 8 32-bit words
per component. Once data is in AOSOA format, each scalar work
item maps to a separate vector lane, giving us the ability to process
4/8/16 items in parallel, depending on the targeted architecture.

Since sorting is preferably performed when inputs are in array-
of-structures (AOS) format, we go through a two step process to
prepare the data before handing it off to ISPC. The first step sorts
the data references as described in Section 5.2. The second step

takes these sorted references to AOS inputs, fetches the AOS data
and transforms them in-place into AOSOA packets (Figure 4). Both
of these steps are executed in C++ before invoking the associated
ISPC kernel.

Accessing the elements of the AOS payload may result in fetch-
ing data from arbitrary cache lines on arbitrary memory pages.
Memory fetches which need to go out to main memory can take
multiple hundreds of cycles to complete. Fortunately this problem
can be alleviated by using memory prefetching intrinsics. Since we
are working on sizeable batches of AOS inputs, we have a priori
knowledge of where in memory each structure lives. This allows
us to prefetch cache lines in advance, such that by the time they
are required, they will have been copied further up the processor
cache hierarchy. The exact prefetch distance is configurable and
chosen based on experimentation for different platforms.

Notice that the conversion from AOS into AOSOA is essentially
a matrix transpose operation. This can be implemented efficiently
in-place using a combination of SIMD unpack, shuffle and permute
operations. A limitation of using these instructions is that they
work on sets of 32-bit words, so we need to cater the contents of
any C++ AOS data structures which we want to convert to AOSOA
accordingly. For the most part, our basic data member types are float
and (unsigned) integers which work fine. Pointers however need
careful handling since they are 64-bit values and will be split up
such that the upper and lower 32-bits of the original address won’t
be adjacent in memory anymore. Special code is needed in ISPC to
reconstruct the original 64-bit address from the upper and lower
32-bit partial addresses. Likewise, similar care is needed for data
types which are less than 32-bits. In practice, the reconstruction of
these values is hidden behind get()/set() accessor functions on
the ISPC side.

By carefully layering these transposition and prefetching build-
ing blocks, we can auto-transpose larger and more complex data
structures on architectures of differing SIMD widths. Additionally
these techniques can be applied in reverse order to convert from
AOSOA back to AOS. Prefetching can also be used in this context
to minimize the cost of the scatter operations when writing AOS
structures back to memory.

Hand-in-hand with the careful access of memory is the care-
ful alignment of memory. ISPC has an option to always generate
aligned vector loads and stores, which can be safely turned on as
long as memory allocations are aligned to multiples of the SIMD
register width. This optimization is used throughout our shading,
texturing, and integration code, and improved the vectorized code
performance by an additional 7-8%.

5.4 Ray State Persistance
Since rays are queued in our breadth-first scheme, we need a place in
memory to store the related state, similarly to previous work [Áfra
et al. 2016; Eisenacher et al. 2013]. Recall that queue entries in the
system contain 32-bit payload references. Typically these are in-
dices into a pool of pre-allocated RayState structures. A RayState
primarily consists of ray differential information, the current path
throughput, and destination frame buffer specifics, among other
data. Any other state which is required to persist whilst a ray is
awaiting processing in a ray queue or shade queue is also contained
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in this structure. A lock-free memory pool allows any thread to al-
locate a RayState instance at any time which permits arbitrary ray
splitting during integration. Additionally RayState instances can
be processed and de-allocated on threads other than the allocating
thread, which is necessary to support shared shade queues.

6 VECTORIZATION
We leverage Embree [Wald et al. 2014] for all ray intersections,
which is already well vectorized internally. This section covers the
other parts of the system which benefit from vectorization, namely
shading, texturing, and integration.

Figure 5: An example of vectorized shading evaluation: a const array
of varying Intersection objects in AOSOA format is passed from
the ShadeHandler to a material implemented in ISPC, and down
into a network of procedural/texture nodes as illustrated by the blue
arrows. Each shade node, also implemented in ISPC, in turn returns a
corresponding (varying) color as illustrated by the red arrows. Finally
the material uses this information to populate the passed-in BSDF
objects with the appropriate BsdfLobes.

6.1 Vectorized Shading
MoonRay supports a full-featured programmable shading system.
For the scalar version of Moonray, the shader objects are imple-
mented in C++ and excuted by a C++ shading framework. For
vectorized MoonRay, the shader objects and the shading execution
framework are implemented in ISPC. We support two different
types of shaders which are connected together at run-time to form
a shader graph as illustrated in Figure 5.

Material shaders are at the root of the shader graph hierarchy,
where they output to the integrator BSDF objects which describe
how the surface scatters light at an intersection point as described
in Pharr et al. [Pharr et al. 2016]. Each BSDF is a list of weighted
and parameterized BsdfLobes. Higher BsdfLobe count means more
expressive power for the Bsdf model but it also implies either an
increase on variance or path integration cost. In our system, we
limit each BSDF object to have at most 8 BsdfLobe objects, which
in our experience is a good balance between artistic flexibility and
rendering efficiency for BSDF modeling. Our system only allows

each geometry primitive to be associated with a single material.
Material layering is supported by a special material that takes two
input materials to produce a BSDF object that is a user controllable
blend of the two input BSDF objects.

The second type of shader is known as a shader node. A shader
node produces a color value that is used to modify an input pa-
rameter of its parent shader. A texture map node or procedural
noise node are some typical examples of shader nodes. Both shader
types take exactly the same input shading state, also known as the
Intersection object. The input state from the renderer is passed
to the root material shader and is in turn passed down into child
shader nodes without any modification, so there is no copying of
input state at all during the shader graph evaluation.

Figure 5 illustrates the flow of AOSOA data up and down our
shading graph during vectorized shader evaluation. From the sorted
list of RayState references (see Table 1), the shade handler con-
structs a set of Intersection objects in AOSOA format, which
are the primary inputs to a shader. Each lane of an Intersection
contains differential geometry information about a hit point in a
form that is independent of the underlying surface representation.
Because we queued our RayState by shader instance, we only need
a single ISPC function invocation to shade the entire Intersection
bundle. The handling thread’s TLS object is also passed into the
shading function, allowing shaders to perform the allocations they
will need in a lock-free manner.

The shading handler allocates and initializes a BSDF object cor-
responding to each varying Intersection object and passes these
into the ISPC shading function to be populated with BsdfLobe ob-
jects. In ISPC terms, our BSDF contains a list of 8 uniform references
to varying BsdfLobe structures. This layout easily handles the
case where different parameterization and weights are needed on
different lanes. Production shader code contains arbitrarily com-
plex conditionals, often due to texturable input attributes. These
conditionals not only affect the lobe parameters and weighting, but
also the lobe type, and whether or not the lobe is generated in the
first place. Since lobes are always varying, for each one added to the
BSDF, we store the active ISPC lanemask() so we can determine
at integration time whether or not a particular lobe is active for a
particular lane.

The single most important role of the ISPC shader framework
from a system performance perspective is to pass along coher-
ent bundles of AOSOA data all the way through to the vectorized
texture system. For production shots, texture mapping, initiated
lazily by the shader code itself, is the overwhelming performance
bottleneck encountered during shading. By writing Single Pro-
gram/Multiple Data (SPMD) shaders in ISPC, we are able to main-
tain AOSOA bundles of data throughout the shading and texturing
phases, and right through the integration phase.

6.2 Vectorized Texturing
We use OpenImageIO [Gritz 2007] (OIIO) as the basis for texturing
in MoonRay. OIIO can be thought of as:

(1) An infrastructure for dealing with different types of image
file formats in a format-agnostic manner, and various tools
for manipulating the image data.
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(2) A runtime image caching system which facilitates efficient
rendering of scenes with larger texture memory footprints
than could fit in physical memory.

(3) A runtime texture sampling system which layers on top of
the image cache.

In our system, we make use of items 1 and 2 (with some cus-
tomizations), but since all the inputs will already be in AOSOA
format as textures are sampled from within the vectorized shading
code, this prompted us to implement a fully vectorized ISPC replace-
ment for item 3. OIIO provides a virtual interface class for adding
new texture sampler implementations which simplified the process.
We built upon the image tile cache functionality already provided in
OIIO with the addition of a new set-associative micro-cache which
is described later.

One impactful decisionwe tookwas to switch to a point sampling
filter as our default. When sampling a texture, the appropriate adja-
cent mip levels are first determined using texture derivatives. Only
a single non-interpolated value is looked up from each, and these
values themselves are linearly interpolated based on the derivatives.
This means we only have to fetch two texels for each request, result-
ing in a very fast, almost branchless texture lookup. Although we
have not done a rigorous quantitative analysis, it works out well in
practice. An informal justification for this decision can be thought
of like so - we need to shoot sufficient primary rays to resolve
geometric aliasing, which can be considered of infinite frequency.
Intuitively, this number of rays should also be sufficient to resolve
any texture aliasing from the already band-limited mip levels we
sample. We do however fall back to vectorized bilinear filtering
when texture magnification is required, i.e. we don’t have a high
enough resolution mip-map to satisfy the request.

OIIO has a main texture tile cache which is shared between all
threads, and a two element thread-local micro-cache layered on
top. This micro-cache was deemed too small to help much with
vectorized execution since each vector lane may itself be accessing
a different tile. To rectify this, we replaced it with a thread-local
4-way set-associative cache [Handy 1998], configured to hold the
most recent 256 tiles accessed. Tile eviction is done using a strict
least recently used policy. Moving up to 256 slots significantly
improved the micro-cache hit rate over the default when running
vectorized code, particularly when many textures were bound to
a shader. Although vectorized ISPC code generates the complete
list of tiles for all lanes required to complete the operation, a C++
function is called to query the micro-cache, and main tile cache if
required, in a sequential fashion.

Additional features we’ve implemented in the vectorized texture
samplers are full UDIM support, the option to return image map
derivatives (via finite differencing), and the ability to pre-load all
texture data in a scene during the preparation phase if desired.

6.3 Vectorized Integration
The ISPC integration kernel directly ingests batches of BSDF ob-
jects in AOSOA format from the shaders. Recall from the previous
sections, that each SOA BSDF is structurally identical on all SIMD
lanes, however the parameters, weights, and dedicated lanemasks
can vary per lane, as each lane corresponds to a small set of coherent
ray hits using the same material shader and the same light-set.

Figure 6: This graph demonstrates how performance scales as the
number of vector lanes increases. Although we still observe non-trivial
gains when moving from 8 to 16 lanes, clearly we also see diminishing
returns. These numbers were captured by rendering the Bergen Town
scene (Figure 2(a)) on Intel’s Knights Landing hardware.

The vectorized integrator can therefore proceed in a data-parallel
fashion, drawing samples and performing all Bsdf and light impor-
tance sampling, evaluation and MIS weighting calculcations in
SIMD. Path splitting and Russian Roulette calculations are also
computed similarly. All this math-intensive body of code is writ-
ten in ISPC, which automatically handles the lane masking within
its non-trivial control flow. As shown in Section 7, our vectorized
integrator suffers from relatively little SIMD divergence.

A notable difficulty occurs with textured light importance sam-
pling, which requires performing a binary search in conditional
cumulative distribution function tables that are different on each
lane. This causes memory gather and SIMD divergence of about
50%.

To handle spawning new rays with or without path splitting, the
integrator fills arena allocated memory buffers with the required
information to construct these new rays. The actual RayStateman-
agement and subsequent queuing of spawned rays is handled with
a call out to C++. In addition to the spawned rays, the integator
kernel is also responsible for providing a list of occlusion rays, and
a list of radiances to add to the frame buffer (see the arrows which
emanate from the Shade Queue Handler in Figure 3(b)). Since these
outputs are generated from ISPC, they will be in AOSOA format,
so a conversion back to AOS format (see Section 5.3) is performed
in C++ before the subsequent queuing of these items.

Rays from different generations are freely mixed within queues
since the majority of the shading/integration code paths are the
same regardless of depth. Since there isn’t any concept of a one-
to-one correspondence between input and output rays, there is
no risk of fragmentation and therefore no ray compaction nor
regeneration [Áfra et al. 2016] is required.

We put effort into ensuring that each lane executes completely
independently of any other lane, since any cross communication
could introduce unwanted indeterminism into the system when
running on multiple threads.
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Figure 7: Comparisons of scalar vs. vectorized execution time for the Poppy (Figure 1), Bergen Town, Astrid, and Hotspur (Figures 2(a), 2(b), 2(c))
scenes respectively. The total time spent rendering corresponds to the height of each stack, measured in seconds. A legend on the right is provided
to give a feel for how time is divided up between the various subsystems. A category called “Vectorization overhead” accounts for all the time
spent in queuing, sorting, and AOSOA code. In general, the speedup we observe from vectorized execution is proportional to the percentage of time
spent in shading, texturing and integration code.

Table 2: A breakdown of key statisics for the scenes profiled. The “ISPC time %” shows the percentage of time in our code we’re processing a vector
lane’s worth of samples simultaneously (e.g. 8 for AVX2). This is computed by taking the total time spent executing ISPC code and dividing it by
the total render time less any time spent inside of Embree. It’s interesting to note that Bergen Town shows a much higher percentage of time
devoted to vectorization overhead than other scenes. This can be attributed to it being one of the more simple scenes with basic geometry and
shaders, and thus a higher ray throughput. The cost of queuing, sorting, and AOSOA tends to remain stable per ray and so the more complex the
workload, the more the vectorization overhead is amortized.

Scene Poppy Bergen
Town Astrid Hotspur

Total scalar time (mm:ss) 41:53 3:34 6:22 1:56
Total vectorized time (mm:ss) 32:41 2:01 3:59 0:50
Millions of rays/sec scalar 3.76 10.43 2.94 5.02
Millions of rays/sec vectorized 4.75 18.47 5.01 11.57
Millions of shader evals/sec scalar 1.66 5.43 1.73 1.14
Millions of shader evals/sec vectorized 2.10 9.63 2.98 2.63
Ray intersection subsystem speedup 1.02× 1.20× 1.00× 1.14×
Shading subsystem speedup 5.09× 6.19× 4.54× 4.20×
Texturing subsystem speedup 1.68× 4.24× 3.43× 2.90×
Integration subsystem speedup 3.00× 2.75× 2.68× 2.72×
Vectorization overhead % 6.86% 18.99% 7.48% 8.82%
ISPC time % (excl. ray intersections) 58.57% 52.38% 70.47% 79.76%
Light SIMD utilization % 61.77% 51.38% 68.72% 58.22%
BSDF SIMD utilization % 71.96% 90.43% 70.39% 80.17%
Overall speedup 1.28× 1.77× 1.60× 2.31×
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7 RESULTS
All tests in Figure 7 were run on a machine with dual Intel Xeon
E5-2697 v3 CPUs running at 2.6GHz. Hyper-threading was disabled
which gave a total of 28 hardware threads. We compiled the code
to target the AVX2 instruction set which is 8 lanes wide, and we
configured the texture system to lazily load textures on demand.

Great care was taken to ensure we performed the same high level
computations in both scalar and vectorized modes, even though the
internal architecture and implementation can differ significantly.
For example, since we wrote a custom texture sampler for the
vectorized code path, we also implemented a scalar version with
identical functionality and outputs so that comparisons are fair.
Each of the 4 images shown in Figures 1 and 2 is visually identical
when run in either mode. See Table 2 for associated statistics for
each scene profiled.

One important point to keep in mind when looking at the stacked
graphs in Figure 7 is that the blue and purple blocks represent time
spent inside of Embree. Time spent inside Embree is outside of the
scope of our optimization work in this paper, but can nonetheless
be a significant part of overall render time. In general we observe
lower overall speedup numbers for scenes where a lot of time is
spent intersecting rays. This can be attributed to Embree being very
well optimized for both scalar and vectorized use cases.

A good example of this is in the Poppy scene (Figure 1). Every
character and asset in this scene is covered in hair or fuzz, resulting
in the render time being very much dominated by ray/hair inter-
sections [Woop et al. 2014]. In fact we spend 59% of time inside
of Embree for the scalar case, a portion of time which doesn’t get
faster with vectorized execution. As a result we only have 41% of
the frame time left to speed up. Despite this, we observe over a 2×
speedup for all non-intersection related work, which results in a
28% overall speedup when factoring in ray intersections.

The corollary to this however is that we observe larger speedups
in scenes which are dominated by shading, texturing and/or inte-
gration. The remaining scenes show examples of this scenario.

Bergen Town (Figure 2(a)) is dominated by integration time (Fig-
ure 7(b)), which as mentioned is a good case for the vectorized code
path. Interestingly, we do see a 20% speedup in ray intersection
time here for vectorized execution, likely since this scene consists
of more typical pre-tesselated subdivision surfaces. This, combined
with a 2.21× speedup in integration and a 4.24× speedup in textur-
ing results in a 77% overall speedup compared to scalar mode. This
scene was also profiled on Intel’s Knights Landing hardware using
lane widths of 4, 8, and 16; see Figure 6 for details.

Astrid (Figure 2(b)) is one of the main characters in the movie
“How to Train Your Dragon”. She has long thick blond hair and her
clothing is also covered in fur. Like the Poppy scene, we don’t
see a meaningful speedup between scalar and vectorized ray inter-
sections in the Astrid render due to heavy hair intersection. The
non-intersection related work however speeds up by a factor of
2.45×, giving an overall speedup of 1.6× for the scene.

The Hotspur asset (Figure 2(c)) represents a typical environ-
ment set piece in our films. Large environment elements have to
withstand the challenge of being rendered close up from arbitrary
camera angles. They often rely on high resolution images which are
layered and projected via complex shader networks. In Hotspur’s

Figure 8: A plot of Embree ray intersection time vs. incoherent queue
size for the Bergen Town scene (Figure 2(a)). We tested using both
packet and ray streaming APIs, and with and without ray sorting (the
cost of ray sorting is not shown here). We observe only a relatively
slight speed up in ray intersection time. This, combined with the extra
time required to sort rays, and additional memory usage to store
intermediate RayStates, ended up not being a win overall.

case there were over 6 layers of different blends and projections
which can access over 11 GB of texture data. In this type of setup,
texturing is the primary bottleneck, followed by shading; see Fig-
ure 7(d). In both of these vectorized code paths, we see large gains -
a 3.44× speedup in shading and a 2.90× speedup in texturing, and
an overall speedup of 2.31×.

Rendering cost grows logarithmically with geometric complexity,
but linearly with shading and lighting complexity. Users typically
add many lights and layers of shaders and textures, which causes
the shading, texturing and path integration components of the ren-
dering system to slow down proportionally. Fortunately, these are
the areas of our system that benefit the most from our vectorization
work.

8 LIMITATIONS
During development we experimented with ray sorting using an
optimized 5D sort in combination with ray queues up to 16 million
in size [Eisenacher et al. 2013]. Figure 8 shows the corresponding
Embree ray intersection performance. Consequently we are not
currently pursuing this avenue. In our tests, the sweet spot for the
incoherent ray queue size is about 1024 entries per thread. Whilst
this number itself is too small to manufacture any meaningful ray
coherence from sorting, we do get some additional coherence as a
byproduct of having a queue per shader instance, since each new
batch of ray hit and continuation rays will be correlated to surfaces
which share that shader.

We don’t currently support lazy evaluation of procedurals for
simplicity of implementation, and due to the complex thread syn-
chronization and potential contention when loading geometry as-
sets while tracing paths through the scene. Instead, all procedurals
are expanded during the preparation phase, and we chose to place
the onus on the upstream pipeline or pre-processing tools to gener-
ate appropriately trimmed scene files.
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Writing vectorized code and thinking in a vectorized fashion
can be a challenge in itself. It can be somewhat at odds with fast
prototyping workflows required to keep a renderer fluidly evolving.
A compromise we’ve found which has worked well so far is to
allow execution of C++ scalar recursive code paths from within the
vectorized framework. This allows programmers to experiment in
the same manner as they would in a scalar depth first context. This
new code runs at standard scalar speed since it’s not vectorized,
but at the same time we still get the full benefit from the portions
of the code which are already vectorized. This hybrid approach has
been utilized to implement subsurface scattering and volumes. As
new functionality solidifies over time, the slower scalar code can
be upgraded to full vectorized implementations.

9 CONCLUSION
We presented a system-wide approach to vectorized path tracing.
This included an efficient queueing and sorting foundation for
extracting data and computation coherence; and vectorization of
the remaining compute-intensive parts of path tracing: shading,
texturing and integration.

In the introduction we asked the question “Do the potential
performance benefits gained outweigh the extra work required to
harness the vector hardware?”. In all scenes we profiled so far with
MoonRay, the answer is a definitive yes.

We have seen that the actual speed up itself is very scene de-
pendent. Scenes which spend the majority of time performing ray
intersections benefit less than those which spend most of their
time performing shading, texturing or integration computations.
This is encouraging since we expect the relative shader and light-
ing complexity to increase as more complex production scenes are
developed.

Results so far have been promising and we’re excited and opti-
mistic to discover how MoonRay performs on its first full feature.
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