Cloud Modeling and Rendering for “Puss In Boots”

Brett Miller Ken Museth

Devon Penney Nafees Bin Zafar

DreamWorks Animation

The story of DreamWorks Animation’s “Puss In Boots™ called for
Puss and his crew to climb up to a world of clouds. Alongside
natural looking clouds, there would be trees and buildings made of
clouds. The art direction called for a lot of detail in the density,
and “magic hour” lighting tones with strong reds and blues. To
achieve this effect we created a system that took a rough digital sky
set, created high resolution volumetric cloud representations, and
allowed artistic lighting controls with multiple scattering effects.

High-Resolution Modeling Of A Digital Sky

FX required a workflow that would introduce an accurate represen-
tation of the clouds as early as possible in our pipeline. Conversely,
layout and character animation preferred to work with proxy repre-
sentations of the clouds. To this end, we modeled modular clouds
as polygonal meshes that layout could dress the set with, and that
animation could immediately animate characters on. When they ar-
rive in the FX department, the polygonal clouds were then scan-
converted into narrow-band level sets, represented in a compact
data structure. This data structure, dubbed VDB[Museth 2012],
forms the basic volume representation for our clouds system. VDB
models a virtually infinite 3D index space that allows for fast and
cache-coherent data access into sparse volumes of extreme reso-
lution. It imposes no topology restrictions on the sparsity of the
volumetric data, and it supports fast random insertion, retrieval and
deletion of data. Additionally, the underlying hierarchical structure
of VDB facilitates bounding-volume acceleration during rendering.
The level sets representations of the polygon models were next dis-
placed using procedural noise, after which additional procedural
noise was added to create a variety of textures, from packed, clumpy
cumulonimbus to feathery nimbus clouds. Final details were ap-
plied using a suite of animated volume primitives such as wispy
curves and spheres. These density volumes were stored both as
camera aligned frustum buffers, in order to maximize the capture
of fine detail, and as coarse rectangular buffers, for lighting calcu-
lations and extra-frustum deep shadow generation. Typical VDB
resolutions were 15,000 x 900 x 500.

Rendering

Our sparse approach to cloud modeling posed certain challenges
and benefits for rendering. Typically density for shadow maps was
zero outside the bounds of the frustum VDBs which resulted in light
leaks duirng the beauty pass. We addressed this issue by generat-
ing low resolution rectangular grids for density queries outside the
frustum bounds during shadow map generation.

We found that FX artists didn’t need complex and general-purpose
lights while rendering expensive direct illumination passes. Thus,
we optimized the light shaders and underlying API by selectively
removing infrequently used parameters and features, but seamlessly
making them available for special cases.

© 2012 DreamWorks Animation LLC. All Rights Reserved.

Many shots required rendering numerous large overlapping grids
simultaneously. Rays were segmented according to the overlapping
bounding boxes to efficiently reduce empty space traversal [Wren-
ninge et al. 2010]. Additionally, motion blur calculations were opti-
mized by simultaneously marching temporal rays rather than treat-
ing them sequentially.

Lighting Clouds

The primary challenge to lighting clouds was to create a multiple
scattering effect. Though brute force approaches have been ex-
plored for this problem, we favored a set of visual approximations.
In our model a cloud has two zones dominated by different lighting
effects: a first order scattering zone, and a multiple scattering zone.
The former is the part of the cloud facing the light, and the latter is
the “underside” of the cloud.

We posed the multiple scattering effect as a wavefront propaga-
tion problem, specifically as the Eikonal equation. The Henyey-
Greenstein phase function is formulated as the speed function for
this partial differential equation. A few voxels closest to the light
in the density grid are initialized as the boundary. The Fast Itera-
tive Method, an expanding wavefront scheme, is used to solve the
Eikonal equation efficiently [Jeong and Whitaker 2008]. The so-
lution represents a time of arrival for the light, which is mapped
to radiance values. Clearly this result is only valid for light which
propagates from a single location. For the sake of efficiency we
make the simplifying assumption that far away from the boundary,
on the “underside” of the cloud, the result faithfully approximates
the mean free path through the medium. We cannot prove the cor-
rectness of this assumption, but we observe that it looks plausible.

Finally we add an ambient occlusion pass to the cloud lighting
model. The ambient occlusion is calculated efficiently using spher-
ical harmonics. A few thousand sampling locations are generated
in the cloud volume. The visibility in all directions is sampled at
these locations by ray marching through the volume, and visibility
function coefficients are computed by projecting the results to the
spherical harmonics basis [Sloan et al. 2002]. During lighting the
local ambient occlusion term is generated by sparse spatial interpo-
lation of the coefficients of the visibility function.

JEONG, W.-K., AND WHITAKER, R. T. 2008. A fast iterative method for eikonal
equations. SIAM J. Sci. Comput. 30 (July), 2512-2534.

MUSETH, K. 2012. VDB: High-resolution sparse volumes with dynamic topology.
Accepted for publication in ACM Transactions On Graphics.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments. ACM Trans.
Graph. 21 (July), 527-536.

WRENNINGE, M., BIN ZAFAR, N., CLIFFORD, J., GRAHAM, G., PENNEY, D.,
KONTKANEN, J., TESSENDORF, J., AND CLINTON, A. 2010. Volumetric meth-
ods in visual effects. In ACM SIGGRAPH 2010 Courses, ACM, New York, NY,
USA, SIGGRAPH ’10, ACM.



