Deep Images and Cutouts

Janne Kontkanen

April 2010

Abstract

This document describes the basic compositing operations possible for
deep image data format. We explain the idea of continuous alpha blending,
and present formulas for computing cutout images that can be accurately
composited by an ADD operation in the post-process compositing stage.

The last section also talks about direct generation of cutout images
from the renderer.

1 What is a Deep Image?

Consider a single pixel in a deep image. Each pixel contains four functions
corresponding to the color and alpha. All of these functions depend on the
depth: r(2), g(2), b(2), v(z). The value of each function equals to the value of
that channel as if you would discard everything beyond that distance. In other
words, if you evaluated r(z) channel at a certain z’ for all the pixels in an image,
you would get a red channel similar to if you put a far plane to that z’ when
rendering.

2 Basic operations — Adding Elements During
Rendering

Adding an element into a pixel of a deep image is the basic operation that
happens a lot during rendering. As a prerequisite for a simple algorithm, we
need to assume that we can process the elements falling within each pixel in
a front-to-back order. Fortunately withing DWAs system this straightforward
since our particle renderer can sort the particles prior to rendering, and our
micropolygon renderer constructs deep files where the surfaces falling within a
pixel can be processed in depth order. We will also assume that z increases as we
go farther away from the camera (opposite to the convention of our software).

So, assume the rendering happens in front-to-back order into a standard
(flat) R,G, B, A framebuffer. Each time we composite a particle, surface (or
any element), into a pixel, that denotes an instantaneous change at that depth.
So, we simply perform an update operation to the deep image such that r(z),

DreamWorks Animation Technical Report 2010-362



9(2), b(z), and a(z) jump from value (R, G, B, A)previous t0 (R, G, B, A)new.
In the future we may also talk about rendering more volumetric elements, so
despite this explanation, don’t assume the r, g, b, a really are ’staircase shaped’-
functions — it is beneficial to also support smoother functions. So in the following
we continue talking about these functions in abstract manner, until we move to
discussing a the specific case of piecewise linear functions.

What ever renderer does to blend results into the framebuffer, we treat as
an abstract operation — we do not care about that here.

3 Merging and Cutouts using Deep Images

Deep images store enough data to allow something that we can call continuous
alpha blending, i.e. merging two images together such that the depth relation-
ships are accurately resolved.

Consider two images, with color and visibility channels ¢;, v1, and co and
v2. You can think of ¢ referring to any of the three possible color channels.

When merging image 1 into image 2, the contribution of the color channels
from the image 1 is dimmed by the occlusion caused by the image 2. We denote
the resulting color ¢1cutout2

This can be written down as follows:

ctowmia(?) = [ (1= a2 5]

This is continuous alpha-blending — we apply the occlusion described by wvo
to each differential change of color ¢;. If we apply the above to all the pixel of
the image, we get something that we typically call a cutout.

Consider merging the two images. You can directly reconstruct a combined
color channel from the two deep images as follows, by talking into account the
color contributions from both, and applying the above cutout-formula two ways:

dz (1)

Clmerge2(2') = /OZ (1- UQ(Z))acaliZ) +(1 - Ul(Z))ac;iz) dz (2)

The above equation works for any combination of surface or particle render-
ings: you can use it to combine two particle renderings, two surface renderings,
or surface rendering and a particle rendering. This is the beautiful thing about
the accumulated visibility function.

You can use 2 for merging two images directly, or you can use 1 to compute
a cutout-image. If you compute cutout images two ways by swapping the roles
of the two images and later composite the resulting flat raster images together
with an ADD-operation you get the same result as if you merged the images
directly.

DreamWorks Animation Technical Report 2010-362



4 Practical Formulas for Piecewise Linear ¢ and
v

In practice, we currently have two modes to store the functions of depth: piece-
wise constant and piecewise linear representation. Our deep shadow maps are
piecewise linear and deep images piecewise constant. There is probably no fun-
damental reason for this, but since we haven’t yet implemented merging for the
piecewise linear case, there is really no use for piecewise linear deep images.

Evaluating cutouts/merging in the piecewise constant case is almost trivial
(at least mathwise), so we go directly into discussing piecewise linear ¢(z) and
v(z).

We can obtain a cutout image for a piecewise linear case, consider a sin-
gle span [zg, z1] where both images are purely linear. So we can denote the

d p) 1 .
%72(’2) =K,,, “5Z(Z) = K, within this span.

derivatives with constants:
This gives us the following:

Span(z()a Zl)lcutout2 = /Zl(l - [UQ(ZO) + (Z - zO)Kvg])Kcle (3)

Z0

Integrating and reorganizing a bit, this gives:

2 2
z K,z
2220 [1 = va(20) + Ko, 20]+ 5 :
(4)
To do the full image, walk through all the spans [z;, z;4+1], in which all the
involved functions are linear. Then sum the contributions evaluated according
to the above equation. To obtain the other cutout image, swap the roles of the
images.

Span(207 Zl)lcutautZ =2 []- - 7)2(20) + KU2ZO]—

5 Visibility Channel and Deep Shadow Maps

The visibility channel should go through a similar treatment as the color chan-
nels above. So when computing the visibility channel for a cutout image, Equa-
tion 1 can be used to apply the cutout from vs to v; and the other way around.
Deep shadow map is a deep depth map that stores only visibility channels. If
the deep shadow map is monochrome, there is a single visibility channel. If the
deep shadow map is colored, there are three visibility channels.

6 Generating Cutouts During Rendering

All the explanation in this document so far has been written in context of deep
images, where we assume that functions r, g, b, and v are explicitly stored.
However, direct rendering of cutout images is also possible, and in fact, this is
what we have done (with different approximations) for years in pa_render via

DreamWorks Animation Technical Report 2010-362




dm and dm_soft particle shaders. Since we are adding particle and volume
rendering support to light, it is natural to allow applying cutouts arbitrarily
regardless of what type of elements we are rendering. For instance, we may
want to cut out a volume from a group of particles and surfaces. Some of these
procedures are not directly needed in the production workflows, but still, it
does not make sense to restrict this procedure to certain types of primitives and
develop special purpose cutout code for those. For code maintenance, it seems
like it would be the best if the cutouts were natively supported in the renderer.

Recall that applying image 2 into image 1 as a cutout means multiplica-
tion with (1 —v2(z)) as we integrate/composite (Equation 1). To evaluate this
directly in the /lib/dshade compositing code, we to maintain vy (z) as we pro-
ceed compositing front-to-back. To do this, we need to introduce an auxiliary
alpha channel that is used during the front-to-back compositing loop. In d2r
we call this a cutout channel. We also simplify the problem this time, by not
thinking about linear interpolation, but assuming that each surface/particle or
volume element causes an instantaenous change to r, g, b, v or v3. The cutout
channel (vy) functions as follows.

Any surface, volume or particle can tag itself as a cutout (a special material
shader output variable). This is currently done by cutout material and cutout
transparency material, but more shaders may use this flag if particles and
volumes are used as cutouts.

If material is tagged as a cutout, the compositor will treat the alpha channel
of that material as a cutout, meaning that the alpha gets blended into the
cutout channel vs, and not into the alpha channel v;. As the compositing
proceeds front-to-back, the vs will be always available in the cutout channel.

# The front-to-back compositing loop in pseudo-code. In practice
# the implementation looks different due to optimizations and support
# for colored alpha, but the basic idea remains.
7
# NOTE: Prior to entering this loop the following is carried out for
# any fragment tagged as cutout:
# Csre|[ALPHA] — ¢4 [CUTOUT]
# csre|[ALPHA] =0
#
for each subpixel c4s; do
clear(cgst)
for each fragment, c,.., in front-to-back order do
for i := RED,GREEN,BLUE,ALPHA,CUTOUT do
Cdst [Z] = Cdst[i] + (1 — Cdst[CUTOUT])(l — Cdst[ALPHA])CSTc[i]
end

DreamWorks Animation Technical Report 2010-362





