“MEGAMIND” : FIRE, SMOKE AND DATA

Krzysztof Rost, Greg Hart, Scott Peterson
DreamWorks Animation

Introduction

Exploding a super hero in DreamWorks Animation's “MegaMind” was
a large scale task. The detail and scale of the explosion was to be
massive and the collaboration between effects artists unprecedented.
This created several technical hurdles and eventually several
innovations such as: a fluid clamping plugin, a volume splatting tool
adjustable by noise, and a collaborative caching tool.

Dependency

At the start we identified the list of required elements: fire, dust,
smoke, debris trails, shock wave, splashes, water interaction and a
light beam. The production schedule required us to create a smooth
work-flow between seven effects artists working at the same time on
shared data. Our goal was to design a clear plan for communicating
responsibility, not only between effects artists but also between the
lighter and compositor.

Fire and smoke

Figure 1: Final rendered images of the exposion

We developed several tools to help us achieve greater detail in our
Maya fluid simulations and greater control over our iterations. The
first notable development was a Maya plugin which allowed for
manipulations of the fluid. The plugin's main feature was to clamp
user-specified fluid fields such as density, temperature, fuel, or
velocity at user-specified rate. Our implementation used a noise field
to mask out areas for clamping to be applied. The noise field could be
animated over time to add a variant as to how values are affected.
Another function that was implemented was temperature erosion.
The result was that a significant amount of perceived detail could be
added. Also, more control was attained over what would have
otherwise been an unstable simulation.

The second development was another Maya plugin which allowed
stamping fluid attributes into a fluid container using particles by
simple splatting at the simulation time. By coupling a noise function
with the plugin , we were able to transfer information from each
particle using noise as a mask into the fluid grid, and as a result
achieve a better distribution. Fig(2).

s~ "

Figure 2: on left distribution using noise, on the right direct particle transfer

We also designed a particle clustering technique to further control the
shape and motion of the explosion. In a nut shell, the clustered
particles were staggered with an offset along the parent velocity

© DreamWorks Animation, L.L.C. 2011. This is the author's version of the
work. It is posted here for your personal use. Not for redistribution. The
definitive version was published in SIGGRAPH 2011 Talks,
https://doi.org/10.1145/2037826.2037916.

vector and at the same time rotating around the same axis. This
method helped to create a sense of a rolling fire ball. Fig(3-left).

Figure 3: Fireball pass

For the fire ball pass, density, temperature and fuel were simulated
simultaneously. At the rendering stage smoke and fire were rendered
separately Fig(3), and later composited together. Fig(4-center).

Figure 4: smoke, fireball and tendrils

For the smoke and ash layer, the simulation conditions were kept the
same, only subtly modifing density, temperature, and fuel fields.
Only density was exported and rendered. Fig(4-left). Lastly, we
added layers such as debris, water splashes, ripples, volume lighting
and used extensive compositing to further increase visual richness.
Fig(5).

en -
Final composite

Data

A new level of collaboration tools were necessary to coordinate
between the seven FX artists involved. The observatory explosion
required generating massive amounts of particles, volumes, curves,
geometry, and deep image data. Our goal was to work as efficiently
as possible by generating heavy data only once. To achieve this level
of collaboration, we designed a pipeline tool which uses another
artist's cached data when it exists and generates it when it doesn't. A
publishing paradigm allowed artists to decide when and what to
share with others. By systematically sharing cached data, artists
could stay in sync, save on disk space and reduce the number of times
the same data is created.

Credits

Krzysztof Rost, Greg Hart, David Lipton, Scott Peterson, Devon
Penny, Kyle Maxwell, Tobin Jones, Shaun Graham, John Allwine,
Markus Burki, Gianni Aliotti, Abhik Pramanik, Eli Bocek-Rivele

email: greg.hart@dreamworks.com
email: scott.peterson@dreamworks.com


mailto:krzysztof.rost@dreamoworks.com
mailto:david.lipton@dreamworks.com
mailto:david.lipton@dreamworks.com
mailto:krzysztof.rost@dreamoworks.com

	Introduction
	Dependency

