
PipelineX: A Feature Animation Pipeline on Microservices

Dan Golembeski
DreamWorks Animation

dan.golembeski@dreamworks.com

Ray Forziati
DreamWorks Animation
ray.forziati@dreamworks.com

Ben George
DreamWorks Animation
ben.george@dreamworks.com

Doug Sherman
DreamWorks Animation

doug.sherman@dreamworks.com

Figure 1: A simple example of a transactional workflow, an important piece of a service-based pipeline.

ABSTRACT
Here we present a unique approach to building a highly-scalable,
multi-functional, and production-friendly feature animation
pipeline on a core infrastructure comprised of microservices.
We discuss basic service layer design as well as the benefits and
challenges of moving decades-old production processes for an
entire animation studio to a new, transactional pipeline
operating against a compartmentalized technology stack. The
goal is to clean up the clutter of a legacy pipeline and enable a
more flexible production environment using modern, web-based
technology.1

CCS CONCEPTS
• Networks → Cloud computing • Computing
methodologies → Computer graphics • Computing
methodologies → Graphics systems and interfaces • General and
reference → Design

KEYWORDS
feature animation, pipeline, microservices

ACM Reference format:

Dan Golembeski, Ray Forziati, Ben George, and Doug Sherman. 2017.
PipelineX: A Feature Animation Pipeline on Microservices. In DigiPro '17,
Los Angeles, CA, USA, July 2017, 4 pages.

© DreamWorks Animation, L.L.C. 2017. This is the author's version
of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in Digital
Production Symposium 2017,
https://doi.org/10.1145/3105692.3105702.

1 INTRODUCTION
Most feature animation production pipelines rely on a colorful
set of scripts, plugins, databases, APIs, and naming conventions
cobbled together over the course of many years. Historically,
this approach has evolved from the need to simply glue together
highly-varied workflows and technologies as quickly as possible,
resulting in a pipeline that is time-consuming to debug,
challenging to evolve, and hardwired to specific workflows and
applications. However, after years of analyzing large-scale
pipelines at various studios, we have concluded that this
“pipeline problem” [Calude et al. 2014], while eternally difficult
and complex, is exacerbated not only by the style of
development but more so by the lack of a clearly delineated
technology stack, comprised of distinctly separate layers of
responsibility, optimally designed to contribute exactly what
they each need to – and nothing more.

If we look outside the comforts of our industry, we realize
that we share a common problem set with our colleagues in
enterprise computing, such as social media, streaming
entertainment, and online commerce. Those applications, at the
core, are attempting to efficiently orchestrate large data sets
among many distributed users. That is not far at all from our
goal for a successful global production pipeline: making sure
users (artists, in this case) have exactly what they need in order
to do their work at the precise time they request it wherever
they are.

Thus, our new approach to pipeline architecture is founded
on the simple idea of similarly harnessing distributed resources
through service-oriented architecture (SOA). In turn, this
architecture enables us to leverage web-based and big data
technologies that have already been validated and tested in
enterprise computing. More specifically, we look to
microservices, a flavor of SOA emphasizing independent
distribution of smaller services, as a way to further support our
efforts of compartmentalizing the pipeline.

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3105692.3105702

DigiPro '17, July 29, 2017, Los Angeles, CA, USA D. Golembeski et al.

2 HISTORICAL PRODUCTION USAGE
To date, a modest set of microservices is already being utilized
on our feature animation productions for production data
revision control, editorial cutlists, media identification, metadata
searching, multi-site data transfer, and other use cases that
represent specific, well-contained functionality within our
production processes. In our implementations we've been able
to leverage a wide variety of libraries, frameworks, languages,
and databases so that each microservice can use the best
technologies with the best approach to deliver successful
production quality results. Java has been the language of choice
for most production services, with an additional collection of
complementary Python services. Choices for database
technologies have included NoSQL solutions such as Couchbase,
MongoDB, Cassandra, and Elasticsearch.

During production, we have observed demands on our
existing services infrastructure peak around 110,000 transactions
per second. In times of high demand like this, we've been able to
apply a variety of caching and dynamic scaling techniques to
maintain an acceptable level of performance for interactive and
batch experiences. These achievements, with all the associated
tweaks and configurations, have increased our confidence that a
service-based infrastructure can indeed scale and flex to meet the
ever-increasing demands of a modern feature animation
production pipeline.

It is through all this prior testing and experience that we felt
comfortable taking the next step to expand the suite of
microservices to our entire production pipeline in an attempt to
both solve the problems outlined in our introduction and yield
new capabilities, flexibility, and scale that has not yet been
achievable through more traditional approaches.

3 SERVICE ARCHITECTURE
In the following diagram (Fig. 2), we illustrate the types of
services a typical feature animation pipeline would require.
Note that these are merely descriptions for categories of services,
not specific service implementations.

Figure 2: A clean separation of service responsibility.

In Fig. 3, we further illustrate a subset of the microservices
implemented in our current architecture and how they interact

in a common user workflow (in this case, creating a new asset).
We use the same colored discs from Fig. 2 to indicate the type of
service implemented in each step.

Figure 3: An example of services involved in asset creation.

To convey a more comprehensive scope of services in the
PipelineX platform, we have included Fig. 4 on the following
page. The figure outlines a minimal set of pipeline components:

 Desktop Applications: local applications
communicating with backend services

 Web Applications: applications assisting in
configuration, creation, management, and visualization
aspects of pipeline data

 Microservices: delivers individual, fine-grained,
lightweight, specific sets of functionality

These combined components build up to deliver an

integrated user experience. This architecture allows for data to
be optimally persisted, accessed, and presented in a way that
meets the requirements of a production pipeline and most
importantly the end user.

4 TRANSACTIONAL WORKFLOW
In addition to clean service architecture, building a pipeline on
microservices requires a different model for how production
work gets done. Many pipelines employ a repository model, in
which hundreds of artists are simultaneously poking at the same

PipelineX: A Feature Animation Pipeline on Microservices DigiPro '17, July 29, 2017, Los Angeles, CA, USA

monolithic data sets, which is often bound by the bottlenecks of
a centralized filesystem [Vanns et al. 2016]. Instead, we rely on a
highly transactional model, in which each artist is assigned a
scoped unit of work called a task (or set of tasks). To perform
those tasks, an artist essentially imports datasets, then modifies
or creates data, and finally exports new datasets. These datasets
are commonly referred to as products. Downstream artists then
pick up a subset of products, add to the data or further modify it,
and send their results downstream as additional products. (See
Fig. 1 for a simplified example of a task-product graph for basic
asset creation workflows.) This results in a well-defined pipeline
that is merely a large dependency graph of tasks and products
modified by asynchronous and atomic operations, the exact
types of operations that can be efficiently and easily processed
by our microservice infrastructure.

When an artist wants to begin some work, we are able to
populate clean and transient workspaces with production data as
needed based on metadata from the pipeline service layer. Next,
we give the artist access to the tools unique to his or her task -
and then get out of the way so the artist can perform the work.
When the artist is ready to complete an iteration, we register the
work and effectively clean up the workspace. This process
simply repeats wherever and whenever is necessary.

This design keeps the pipeline layer lightweight and out of
the way. Its role can be contained to simply processing events
triggered by workflow tools and only assists the users in starting
or completing their tasks.

5 COMPARATIVE ANALYSIS
The concept of a transactional pipeline is not new to PipelineX.
In fact, generally speaking, capturing pipeline transactions in a
dependency graph is already a commonly accepted technique for
tracking pipeline dataflow, even for pipelines not utilizing SOA
[Johnson et al. 2014; Polson 2015]. Similarly, digital production
facilities have been running certain processes – predominantly
long-running batch rendering – in the cloud for years, typically
with a significant time and bandwidth cost due to inefficient data
transfer [Vanns et al. 2016].

What PipelineX introduces is the idea of backing every
transaction and bit of data in the pipeline with a service
architecture that can run anywhere in the world. With this
simple combination of a transactional pipeline and a set of
microservices, we can now remotely execute more processes
than just rendering, including processes that were previously
tricky for us to offload, such as data conversion, data transfer,
and simulation. This distinguishes PipelineX from other cloud-
based pipelines that are capable of leveraging the cloud but do
not natively operate in the cloud.

Additionally, PipelineX aims to do this while still serving up
data and tools to the artist in a way that is user-friendly,
customizable, and can be utilized on local hosts when necessary.
Since the pipeline is agnostic to applications, production
management constructs (e.g. sequence/shot), and file formats, we
can scale and reshape the pipeline to fit any size and type of
production currently on our docket – from a few shots for a
television spot to thousands of shots for a ninety-minute feature.
We can add new applications, file types, workflows, or even
departments whenever we need to, without changing a single

Figure 4: The conceptual components of the PipelineX architecture.

DigiPro '17, July 29, 2017, Los Angeles, CA, USA D. Golembeski et al.

service. For us, having such degrees of flexibility is an
advantage over cloud-based pipelines that operate with a more
limiting set of constraints.

6 BENEFITS
Beyond the ability to remotely process a wealth of new pipeline
activities, this microservice-based approach to pipeline has also
yielded new levels of information gathering and dependency
tracking that we were simply unable to achieve with a more
traditional approach. With pipeline logic squarely tucked away
in a set of services implemented in an industry-standard way, we
get instant access to all the typical benefits of SOA: readily
available third-party monitoring solutions, data mining and
analytics, fault tolerance, and the ability to scale by spinning up
new instances of services to meet production demand.
Additionally, we have made the pipeline easier to evolve by
mitigating risk of change since development iterations are
isolated to subset of affected services.

The event-processing aspect of a microservice architecture
lets us tap into the event stream of the pipeline layer to easily
notify users when interesting things happen (e.g. a new version
of an incoming product is available). We can let users perform
the same pipeline activity (e.g. publishing data) from anywhere
they’d like – their desks, a dailies room, or eventually mobile
devices – simply by sending a snippet of JSON data to a
Workflow Service.

Not only does the transactional model work well with our
microservice architecture, but it also helps more clearly define
responsibility at the artist level, too. It establishes workflow
contracts that the pipeline can enforce. Furthermore, it lessens
the need for tribal knowledge since all data is strongly typed and
tracked explicitly. That, coupled with more dynamic workspace
creation, allows us to easily reassign work or transfer data
quickly with minimal artist interruption.

7 OUTSTANDING CHALLENGES
A microservice architecture comes with its own set of drawbacks
that we are still addressing. Despite the codebase separation
inherent in a microservice design, it is fairly easy for a
production developer to unwittingly expose the artist to
unnecessary levels of detail in the lower-level services, thus
ruining our clean separation of technology layers. Additionally,
instrumentation and logging in a complex network of
interdependent services is challenging; this unfortunately
prevents us from immediately improving the daily routine for
debugging production problems. Nonetheless, with new
debugging tools that leverage the extra metrics we now produce,
we believe we can eventually create a better debugging
environment in the future. Most challenging of all, however, the
abstraction of data has been a tricky proposition for users to
accept. It requires careful management of the user experience to
ensure artists can still access all types of information about data
that they are currently utilizing by navigating a traditional
filesystem.

8 CONCLUSION
Years of duct-taping have made our pipeline clunky and more
complicated than it really needs to be. This cleaner, more
modern architecture is enabling a pipeline that is stable enough
to withstand the pressure of modern production schedules,
flexible enough to continue pushing the envelope creatively, and
scalable enough to meet the ambitions of diversified animation
studio.

REFERENCES
Cristian S. Calude, Alasdair Coull, and J. P. Lewis. 2014. Can we solve the pipeline

problem?. In Proceedings of the Fourth Symposium on Digital Production
(DigiPro '14). ACM, New York, NY, USA, 25-27. DOI:
http://dx.doi.org/10.1145/2633374.2633380

Chris Johnson, Josef Tobiska, Josh Tomlinson, Nico Van den Bosch, and Wil
Whaley. 2014. A framework for global visual effects production pipelines. In
ACM SIGGRAPH 2014 Talks (SIGGRAPH '14). ACM, New York, NY, USA,
Article 57, 1 pages. DOI: https://doi.org/10.1145/2614106.2614159

Bill Polson. 2015. A conceptual framework for pipeline. In Proceedings of the 2015
Symposium on Digital Production (DigiPro '15), Stephen Spencer (Ed.). ACM,
New York, NY, USA, 51-52. DOI: http://dx.doi.org/10.1145/2791261.2791272

Jim Vanns and Aaron Carey. 2016. A fully cloud-based global visual effects studio.
In ACM SIGGRAPH 2016 Talks (SIGGRAPH '16). ACM, New York, NY, USA,
Article 72, 2 pages. DOI: https://doi.org/10.1145/2897839.2927432

http://dx.doi.org/10.1145/2633374.2633380
https://doi.org/10.1145/2614106.2614159
http://dx.doi.org/10.1145/2791261.2791272
https://doi.org/10.1145/2897839.2927432

