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Figure 1: Comparison between stratified uniform sampling and our importance sampling for hair bsdf.

Abstract

In this paper we present a practical importance sampling method
for the bidirectional scattering distribution function (bsdf ) of hair
material. Our sampling method is derived from a simplified ap-
proximation of the Marschener hair model, also known as the artist
friendly hair shading model. Specifically, we show that by approxi-
mating the gaussian components in the hair bsdf lobes using cauchy
distributions, we are able to derive an analytic pdf s and an efficient
sampling function for each hair bsdf lobe. Our method is robust,
efficient and accurate. It can be seamlessly integrated with multi-
ple importance sampling to improve the performance of environ-
ment lighting, area lighting and indirect lighting for hair. Unlike
importance sampling methods based on factorized bsdf represen-
tations, e.g. wavelet importance sampling and spherical harmonic
importance sampling, our method provides a closed-form solution
that does not require any precomputation and has very low memory
footprint. Compare to uniform sampling, our method significantly
reduce the number of samples for rendering hair material.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: hair rendering, importance sampling

1 Introduction

Hair is one of the most common element on human and animal
characters. High-quality hair rendering is essential to provide be-
lievable appearance in digitally-created content. In this paper, we
are interested in rendering hair lit by area and environment lighting,
without precomputation to support dynamic scenes. This situation
is common in nowadays feature film production, where area light-
ing and HDRI lighting are becoming more and more prevalent.

Marschner et al. [2003] introduced a physically-based scattering
model for hair, that captures all the nuances of its appearance. How-
ever, this model is computationally expensive, requiring the solu-
tion of a cubic equation derived by internal path analysis. More-
over, it is cumbersome for artists to control the appearance of hair

by changing the model’s parameters directly. To address these prob-
lems, Sadeghi et al. [2010] proposed an artist-friendly shading
model for hair that approximate Marschner’s model using only ele-
mentary functions that are easier for artists to control in production
environments. In this paper, we are specially interested in this latter
model.

Both these hair shading models have narrow peaks in the specular
lobe, especially for shiny hair. This causes severe noise when ren-
dered using Monte Carlo methods, especially when combined with
large area lights and environment maps. Importance sampling is a
widely used variance reduction technique for Monte Carlo numer-
ical integration. In the context of rendering, importance sampling
offers a mean to reduce the variance by taking more samples in re-
gions with significant contribution to the illumination integral. To
the best of our knowledge, how to efficiently importance sample the
hair scattering functions referenced above is not known.

In this paper, we present an efficient importance sampling method
for hair bsdf . Our method is capable of significantly improving the
quality of the rendered image, as seen in Figure 1, with negligible
overhead. We reduce noise by drawing samples from a distribution
that approximate well [Sadeghi et al. 2010]’s scattering function.
We do so efficiently since drawing samples only requires the evalu-
ation of a few analytic functions, with no precomputation or signif-
icant memory footprint. We found our method easy to implement
both in a prototype path tracer and in a large production system
based on micropolygon rendering. In both cases, results can be
further improved by using multiple importance sampling that takes
lighting into account as well.

We believe that the main contribution of our work is to provide the
first practical importance sampling algorithm for hair bsdf that is
very effective at reducing noise, while remaining simple to imple-
ment and efficient to evaluate. In the remainder of the paper, we
start with a brief overview of related work, follow that with our
our algorithm and results presentation, and end with discussion and
conclusion.

2 Related Work

Photorealistic Hair Rendering There is a large body of work
regarding hair modeling and shading. Here we review only the
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ones most closely related to this paper, referring the reader to [Ward
et al. 2007] for a detailed review. The first prominent work in the
field of hair rendering was proposed by Kajiya and Kay [1989]. It
modeled hair bsdf by computing light scattering from a thin cylin-
der. Marschner et al. [2003] improve upon this model by incor-
porating internal path analysis of hair strands. Marschner’s work
was the first complete physically-based hair shading model, capa-
ble of capturing the complex scattering behavior of hair. By ap-
proximating Marschner’s model, Sadeghi et al. [2010] derived a
practical hair shading model that was more efficient and easier for
artist to control. d’Eon et al. [2011] proposed an energy conserv-
ing hair reflectance model, which included several modifications to
Marschner’s model to ensure energy conservative during scattering.
These models focused on providing accurate scattering bsdfs for
hair, but none provided an efficient method to importance sample
the scattering functions. This is the focus of our work. While our
method will also speed up multiple scattering using Monte Carlo
methods, it can also be integrated with more efficient solution that
focus on this aspect such as [Moon and Marschner 2006; Moon
et al. 2008; Zinke et al. 2008].

Importance Sampling Surface Materials High-quality Monte
Carlo rendering requires the ability to importance sample realis-
tic bsdf models. There has been extensive research on importance
sampling for surface bsdf , as summarized in [Pharr and Humphreys
2010]. Analytic methods exist only for the simple bsdf such as
Phong [Phong 1975], Lafortune [Lafortune et al. 1997] and Ward
[Larson 1992]. For more complex bsdf and measured material, ap-
proximations of varying degree of quality are applied. A more gen-
eral solution is to derive importance sampling functions by using
factorized representations or basis projections of bsdf [Lawrence
et al. 2004; Clarberg et al. 2005; Jarosz et al. 2009]. However,
these methods require precomputation and have high memory foot-
print, making them impractical for spatially-varying materials. Our
method uses an accurate analytic approximation that does not suffer
from these constrains.

Importance Sampling Hair There is little published work on
importance sampling for hair. Neulander et al. [2010] derived a
practical importance sampling algorithm based on a cone-shell hair
bsdf model, which is a variant of Kajiya Kay model. However,
this method does not support hair models that have multiple spec-
ular lobes with different width and offset, such as Marschner’s hair
model or its variants; for which we are not aware of any previous
works regarding importance sampling.

Hair Rendering under Environment Lighting Hair rendering
under environment lighting will benefit from an efficient bsdf im-
portance sampling algorithm. This case is so common that algo-
rithms have been developed specifically for it [Ren et al. 2010; Xu
et al. 2011]. While these methods work well in their problem do-
main, they are limited to environment lighting and require a certain
amount of precomputation, which makes them impractical for pro-
duction rendering. Moreover, they are all derived by directly com-
puting the illumination integral with approximation. The lack of
Monte Carlo sampling process makes them unsuitable for scenes
with dynamic occluders.

3 Hair Importance Sampling

We start the presentation of our importance sampling method with
a summary of the hair shading model it supports, follow by the
derivation of sampling functions for each lobe of the hair bsdf and
the complete scheme for importance sampling. In this paper, we
follow the notation summarized in Table 1 and Figure 2.

symbol description

S(θi, φi, θr, φr) hair bsdf
MR,MTT,MTRT longitudinal scattering functions

NR,NTT,NTRT-g,Ng azimuthal scattering functions

ωi incoming direction
ωr reflected direction
u hair direction, pointing from the root to the tip

v,w axes of the normal plane, orthogonal to u

θi, θr inclination of ωi and ωr w.r.t the normal plane
where 0◦ is perpendicular to u, 90◦ is u, and−90◦ is−u

φi, φr azimuthal angles of ωi and ωr in the normal plane
where v is 0◦ and w is 90◦

φ relative azimuthal angle, φ = φr − φi
θd longitudinal difference angle θd = (θr − θi)/2
θh longitudinal half angle θh = (θr + θi)/2

Table 1: Summary of notation.

Figure 2: Local hair coordinate system.

3.1 Hair Shading Function

Sadeghi et al. [Sadeghi et al. 2010] proposed an artist-friendly
hair shading model. In this model, the scattering function
S(θi, φi, θr, φr) of hair fibers is decomposed into four individual
components: reflection (R), refractive transmission (TT), secondary
reflection without glint (TRT-g) and glint (g). Each component is
represented as a separate lobe and further factored as the product of
a longitudinal term M and a azimuthal term N . The full scattering
model is shown as equation (1). Table 2 shows the definition of
each individual longitudinal term and azimuthal term used in equa-
tion (1).

S(θi, φi, θr, φr) =IRMR(θh)NR(φ)/ cos
2 θd+

ITTMTT(θh)NTT(φ)/ cos
2 θd+ (1)

ITRTMTRT(θh)NTRT-g(φ)/ cos
2 θd+

ITRTMTRT(θh)IgNg(φ)/ cos
2 θd

M (longitudinal terms) N (azimuthal terms) I(intensity)

R g(β2
R , θh − αR) cos(φ2 ) color vector

TT g(β2
TT, θh − αTT) g(γ2

TT, π − φ) color vector
TRT-g g(β2

TRT, θh − αTRT) cos(φ2 ) color vector
g —- g(γ2

g , |φ| − φg) scalar

Table 2: Definition of components in equation (1).

I[R|TT|TRT] is the color/intensity of its corresponding lobe and Ig is
the additional intensity of the Glint lobe. M[R|TT|TRT] are the longi-
tudinal terms. They model the longitudinal variation of each lobe.
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All of them are defined as gaussian functions of longitudinal half
angle θh.

M[R|TT|TRT] = g(β2
[R|TT|TRT], θh − α[R|TT|TRT])

, where β[R|TT|TRT] and α[R|TT|TRT] are the width and median of cor-
responding gaussian function. α[R|TT|TRT] controls the highlight
shift of each lobe, while modifying β[R|TT|TRT] changes the rough-
ness of the hair. N[R|TT|TRT-g|g] are the azimuthal terms. They model
the azimuthal variation of each lobe. All azimuthal terms are a
function of relative azimuthal angle φ = φr − φi. NR is defined as
cos(φ/2). NTT is defined as a gaussian function with a user control-
lable azimuthal width γTT. NTRT-g is approximated as cos(φ/2) and
Ng is defined as two gaussian functions with width γg and symmet-
ric about axis φ = 0, where φg is the half angle between the peak
of two Glint.

3.2 Importance Sampling

To efficiently reduce variance of Monte Carlo integration, we want
to draw samples from a pdf that is proportional to the function we
are estimating. In the context of hair rendering, we want to draw
sampling of ωi so that p(ωi) ∝ S(θi, φi, θr, φr)

Because the hair bsdf model is a multiple-lobe model, it is imprac-
tical to sample all the lobes at the same time. In this section, we
will first describe how to efficiently sample each lobe individually.
Then, we show how to combine all the lobes by randomly select
a lobe base on its energy estimation. Noting that the longitudinal
terms and azimuthal terms depend on different variables, they can
be sampled independently. Specifically, we sample spherical angle
θi and φi separately, then convert them into direction ωi. The pdf
of the sample is a product of the longitudinal pdf and the azimuthal
pdf , p(ωi) = p(θi)p(φi). We used the invert cdf technique [Pharr
and Humphreys 2010] to derive our analytic sampling functions.

Sampling Gaussian Function Equation (1) use different gaus-
sian functions to model the variation in longitudinal and azimuthal
scattering (See Table 2). To derive a efficient sampling algorithm,
we would need to draw samples from a gaussian distribution. How-
ever, deriving a sampling algorithm for the gaussian distribution is
nontrivial; because gaussians do not have closed-form antideriva-
tives, making it infeasible to use the inverse cdf technique directly
(See Figure 3). Although there exists approximation for the pdf and
cdf of gaussian , they require the evaluation of Error Functions or
Taylor series[Pressa et al. 2007]. These methods are either compu-
tationally expensive or unstable at the tail of the gaussian function

Figure 3: Gaussian functions only have a closed-form integral
in
√

2πβ2 of domain (−∞,∞). In domain [−π/2, π/2] and
[−π/2, x], Gaussian has no closed-form antiderivative, making it
infeasible to compute the pdf or the cdf needed for deriving impor-
tance sampling.

To overcome this limitation, we would like to draw samples from a
pdf that has a similar shape to the gaussian function and a closed-
form antiderivative. Observing that gaussian is a bell-shape func-
tion with varying width and offset, we can use approximate it using
another bell-shape function.

Cauchy distribution Cauchy distribution is a probability distri-
bution mainly used physics research. It is defined as follows:

f(γ, x− x0) =
1

π

[
γ

(x− x0)2 + γ2

]
Similar to gaussian , cauchy distribution is a bell shape function
with offset x0 and width γ. In contrast to gaussian , cauchy has an
analytic antiderivative.

P (x) =
1

π
tan−1

(
x− x0
γ

)
This simple form of antiderivative make it very easy to derive a
sampling algorithm using the inverse cdf technique. Also, the pa-
rameter conversion between two distributions is trival. The offset
and width of a gaussian distribution can be directly used as the off-
set and width of a cauchy distribution. Figure 4 shows the plot of
a set gaussian functions and cauchy functions with same widths
and offsets. The fact that cauchy distributions have wider tails than
gaussian guarantees that using cauchy to approximate the gaussian
in importance sampling will not increase variance. Using this ap-
proximation, we derive our sampling method for each lobe.

Figure 4: cauchy and gaussian distributions with same width and
offset. Both of distributions are normalized in domain [−π/2, π/2]

3.2.1 Sampling Longitudinal Terms

Since three longitudinal terms have the same form, we generalize
the approach by using symbols M , β and α instead of M[R|TT|TRT],
β[R|TT|TRT] and α[R|TT|TRT]. Note that we ignore the 1/ cos2 θd terms
for the simplicity, since M[R|TT|TRT] alone accounts for most of the
variation of the longitudinal term. Substituting the gaussian func-
tions in the M terms with cauchy distributions allows us to derive
the sampling functions for incoming inclination θi(See derivation
in appendix A). Given a random variable ξ uniformly drawn from
range [0, 1], we can sample θi as:

θi = 2β tan(ξ(A−B) +B) + 2α− θr

, where A = tan−1

(
π/2+θr

2
−α

β

)
and B = tan−1

(
−π/2+θr

2
−α

β

)
.

A and B are the generalization of variables A[R|TT|TRT] and
B[R|TT|TRT]. The longitudinal pdf can be computed as

p(θi) =
1

2 cos θi(A−B)

βx
(θh − α)2 + β2

3.2.2 Sampling Azimuthal Terms

All azimuthal terms are a function of relative azimuthal angle φ =
φr − φi. In our approach, we first sample φ, then compute φi =
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range of ξ sign of φ remapping

ξ < 1
2 + ξ = 2ξ

ξ ≥ 1
2 − ξ = 2(1− ξ)

Table 3: Selecting the Glint lobe base on the range of random vari-
able ξ2 and remap it back to range [0, 1]

φr − φ. We also need to transform the pdf of φ to the pdf of φi,
but it can be proved that

p(φi) = p(φ)

∣∣∣∣dφidφ
∣∣∣∣−1

= p(φ)

SamplingNR. NR is evaluated as cos(φ/2). Deriving a sampling
function for this term is trivial (See Appendix B for derivation).
Given a uniform random variable ξ from [0, 1], we can sample φ as

φ = 2 sin−1(2ξ − 1)

then we can compute φi = φr − φ and azimuthal pdf , p(φi) =

p(φ) = 1
4
cos φ

2
.

Sampling NTT. NTT is driven by a gaussian function, which has
positive value in range [0, 2π]. We take an approach similar to the
longitudinal terms (See derivation in Appendix C). Given a uniform
random variable ξ from [0, 1], we can to draw a sample of φ as

φ = γTT tan

[
CTT

(
ξ − 1

2

)]
+ π

, where CTT = 2 tan−1
(
π
γTT

)
. Then we can compute φi = φr−φ

and the azimuthal pdf , p(φi) = p(φ) = 1
CTT

[
γTT

(φ−π)2+γ2TT

]
Sampling NTRT-g NTRT-g is approximated as cos(φ/2). Since it is
the same as the NR term, we follow the same approach as sampling
NR.

Sampling Glint Glint lobe models the lighting effect cause by the
caustic light path inside hair strands. The azimuthal term of Glint
is defined as two gaussian functions symmetric about axis φ = 0.
For every random sample, we only choose one Glint to sample.
Specifically, given a uniform random variable ξ from [0, 1], we first
choose one of two Glints by setting the sign of φ base on the range
of ξ. Then, we remap the ξ back to range [0, 1] as shown in Table 3.
After that we can sample φ using the remapped ξ (see derivation in
Appendix D).

φ = γg tan(ξ(Cg −Dg) +Dg) + φg

, where Cg = tan−1
(
π/2−φg
γg

)
and Dg = tan−1

(
−φg
γg

)
Once we have φ, we can compute φi = φr ± φ. The sign of
φ is determined by the lobe we selected in the remapping stage
(Table ??). We also need to transform the pdf to account for the fact
that we remapped the random variable. The resulting azimuthal pdf
is p(φi) = 1

2
p(φ) = 1

2(Cg−Dg)

[
γg

(|φ|−φg)2+γ2g

]
3.2.3 Energy based lobe selection

We have discussed how to sample each lobe individually. To sam-
ple the complete bsdf , we need to distribute samples according to

the energy distribution of the bsdf . For each random sample, this
is achieved by selecting a lobe with a probability proportional to
its total energy estimation. We constructing a discrete cdf by us-
ing the energy estimation of each lobe. The energy of each lobe is
approximately computed as a product of the integral of each lobe’s
longitudinal term and azimuthal term. The following is the esti-
mated energy for each lobe.

ER = 4
√
2πβRIR ETT = 2πβTTγTTITT

ETRT-g = 4
√
2πβTRTITRT Eg = 4πβTRT γgITRTIg

Noting that we are using the gaussian integral of domain [−∞,∞]
instead of [−π/2, π/2] to compute the energy estimation. Although
it is not accurate, but it is easy to compute and works fine as an
estimation. The approximation error is less than 1% for β < 30◦

and |α| < 20◦.

3.3 Implementation Details

Amortizing constants computation It is important to note that,
A[R|TT|TRT], B[R|TT|TRT], CTT, Cg and Dg in the sampling functions
are constants for all the samples of the same gather point and re-
flective direction ωr ,. We only need to compute those constants
once and amortize the cost for all the samples.

Longitudinal grazing angle pdf Notice that in the longitudinal
pdf has a singularity when θi approaches −π

2
or π

2
. The sample

evaluation become numerically unstable at grazing angles. To avoid
this problem, in our implementation, we discard the sample if angle
between ωi and u or−u is smaller then a predefined epsilon (10−5

in our case). Although in theory this may bias the result when the
gaussian is wide, in practice this is not a problem since most longi-
tudinal lobe for hair tend to be sharp.

Replacing Gaussian with Cauchy In this paper, we derive our
pdf based on a artist friendly model used gaussian extensively. Al-
though cauchy distribution can provide a good sample distribution
for gaussian function(Figure 5), the shape of two distribution do not
match exactly (see Figure 4). As an extension of our work, we pro-
pose a new hair bsdf by replacing all the gaussian functions in the
old model with cauchy distributions. This new bsdf model intro-
duces some very minor visual differences, but it is able to achieve
a better sampling performance. The comparison between the new
bsdf and the published artist friendly model is out of the scope of
this paper. Interested readers can find comparisons using the new
model in our supplemental material. All the result in this paper is
generated using the published artist friendly model.

4 Results

4.1 Sample Distribution

Figure 5 shows the sample distributions using the described im-
portance sampling scheme. All the random number is generated
using a Halton Sequence, which is already stratified[Pharr and
Humphreys 2010]. Compare to uniform sampling (Figure 5.A),
our importance sampling method (Figure 5.B) is able to concen-
trate samples to the area with high energy. Figure 5.C-F show the
sample distribution of each individual lobe.

4.2 Rendering Result

Overview We implemented our importance sampling scheme for
hair bsdf in a raytracing renderer written in C++. The source code
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A. UNIFORM SAMPLING B. IMPORTANCE SAMPLING C. R LOBE

D. TT LOBE E. TRT-G LOBE F. GLINT LOBE

Figure 5: Comparison of sample distributions using uniform sampling (a) and hair bsdf importance sampling (b). We also shown sample
distributions of each individual lobes. (c) Importance samples of R lobe. (d) Importance samples of TT lobe, (e) Importance samples of
TRT lobe without Glint. (f) Importance samples of Glint. Sample distributions show that our approach can place samples match the energy
distribution of the bsdf.

of this C++ implementation is available in the supplemental mate-
rial. Moreover, to test our approach in a movie production environ-
ment, we also implemented the described algorithm in a produc-
tion pipeline based on rasterization and micro-polygon rendering.
Figure 6 shows a comparison of our method to stratified uniform
sampling. All the image are rendered using multiple importance
sampling (MIS). Therefore sample count 16 means 16 bsdf sam-
ples and 16 light samples. In supplemental material, we included
all the rendering images with its native resolution and animation
sequences.

Area Lighting Area light is a surface that emits radiance. It is es-
sential to computing physically plausible images. Computing direct
lighting with area light can be done by sampling the light, the sur-
face bsdf , or both (MIS ). When the area light is large or the surface
bsdf is high glossy, light sampling approach become inefficient.
Moreover, the present of occluders can also make light sampling
insufficient. In these cases, it is important to have efficient bsdf
importance sampling.

Figure 6.A is a simple scene with a large area light above the hair
geometry rendered with our raytracing implementation. We can see
the significant noise is shown using uniform sampling with small
number of samples(32 samples), while the importance sampling re-
sult is relatively smooth. With 256 samples, importance sampling
image has no visible noise, while uniform sampling image still has
some distracting noise.

Figure 7.A is a production model render with the production
pipeline. Noting that with sophisticated anti-aliasing and filtering
algorithm in the production pipeline, it requires significantly less
samples then our simple raytracing implementation to get a visually
pleasant image. The comparison still shows obvious improvement
when using our importance sampling scheme.

Environment Lighting Environment light is able to provide re-
alistic illumination to the scene. Importance sampling the environ-
ment map can be done by building a 2D cdf [Pharr and Humphreys
2010]. However, light sampling can become in efficient when the
illumination in the environment map is smooth.

Figure 6.B is a simple scene with a environment map of Grace
Church. In this case, while light sampling is able to quickly capture
the highlight on top of the hair, it because quite inefficient for the
highlight at the lower part of the hair cloud. While uniform sam-
pling is not able to clean up the noise of cause by the Glint with
256 samples, our importance sampling method is able to provide
a smooth result using with relatively small amount of samples (64
samples).

Figure 7.B is a production scene rendered with a environment map
of Ennis-Brown House. While uniform sampling is not able to
clean up the noise of cause by the Glint with X samples, our im-
portance sampling method is able to provide a smooth result using
with relatively small samples (X samples).

Indirect Lighting Indirect illumination is an important compo-
nent of global illumination that provides realistic appearance of a
scene. Unlike direct illumination, indirect lighting is unstructured.
Therefore light sampling and MIS cannot apply in this situation.
Normally, scattering ray is generated by only bsdf sampling.

Figure 6.C is a simple scene with a hair model inside the cornell
box. In the scene, we turn off the multiple scattering inside the
hair cloud. The comparison shows our importance sampling algo-
rithm is able to generate images converge much quicker than uni-
form sampling. In the setting of Figure 6.D, we allow multiple
scattering inside the hair cloud. Although that requires a longer
rendering time and higher number of samples for both methods. It
is clear that our importance sampling method is able to converge to
the correct result much quicker than stratified uniform sampling.

5 Discussion and Limiation

Sampling Efficiency Although our importance sampling method
always yields better sample efficiency than uniform sampling, the
magnitude of improvement highly depend on the setting of the
scene and the hair bsdf . In the case of rough hair and high fre-
quency environment map, the improvement is less obvious because
in that case the light sampling become dominant in the MIS weight-
ing.
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REFERENCE 256 UNIFORM SAMPLES 256 IMPORTANCE SAMPLES 32 SAMPLES 64 SAMPLES 128 SAMPLES
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Figure 6: Comparison of our importance sampling approach and simple uniform sample. All the images are render with MIS turned on. (A)
Raytracing direct Illumination with a large area light lies along the direction of the hair strands. Light sampling is inefficient in this case. Our
method capture the longitudinal variance better than uniform sampling. (B) Raytracing direct Illumination with environment lighting. Our
method generate smooth result with small number of samples while uniform sampling failed to capture the glint and transmission highlight.
(C) Indirect lighting without multiple scattering inside hair cloud. (D) Indirect lighting with multiple scattering inside hair cloud.

Multiple Scattering Our importance sampling algorithm is de-
rived for the single scattering function. We shown multiple scatter-
ing results rendered by path tracing, which performance is drasti-
cally improved by using our importance sampling algorithm. Ap-
proximation algorithms for multiple scattering is out of the scope
of this paper. Although our sampling algorithm is not specifically
designed for multiple scattering approximation algorithm, we be-
lieve those algorithms will still benefit from our work. For example,
our importance sampling can be used to drive the photon shooting
of [Moon and Marschner 2006] and light tracing of [Moon et al.
2008].

Integration with Other Sampling Techniques Since our sam-
pling algorithm does not require any additional data structures, it
can be easily integrated with other sampling techniques. We have
only shown our method using in a raytracer with multiple impor-
tance sampling, but it can also be used with other Monte Carlo
techniques, e.g. photon mapping, bidirectional path tracing, or
even more sophisticated unstructured illumination sampling tech-
nique[Wang and Åkerlund 2009].
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Figure 7: Comparison of our importance sampling approach and simple uniform sample. Production models with pipeline.

6 Conclusions and Future Work

In this paper, we presented a practical importance sampling algo-
rithm for hair bsdf , which is simple to implement and efficient
to evaluate. By approximating the gaussian functions in the bsdf
function using cauchy distribution, we are able to derive an ana-
lytic sampling algorithm, which in many cases reduces variance and
sampling times compare to stratified uniform sampling. We use our
importance sampling method to render scenes with area lighting,
environment lighting, indirect lighting and multiple scattering.

In future work, we would like to extend our technique to perform
importance sampling for multiple scattering lobes. We would also
like to extend it to support different hair bsdf models, e.g. the
Marschner’s model and the energy conservative model. We also in-
terested in integrating our work with different sampling techniques
e.g. Metropolis Raytracing. Generally, we see our work as a first
step towards efficient sampling technique for hair bsdf . With the
increasing importance of physically based technique and accurate
hair shading in production rendering, this problem promises to have
growing significance.
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A Longitudinal Sampling Derivation

Given a uniform random variable ξ from [0, 1], we want to draw a sample of θi from
pdf .

p(θi) ∝
[

β

(
θi+θr

2 − α)2 + β2

]
1

cos θi

Noting that 1/ cos θi term is there to compensate the correcting factor for transform-
ing the integral over solid angle into integrals over spherical coordinates. The normal-
ization gives that ∫ π

2

−π
2

c

[
β

(
θi+θr

2 − α)2 + β2

]
1

cos θi
cos θidθi

= 2c tan
−1

(
θi − α
β

)∣∣∣∣π/2+θr2

−π/2+θr
2

= 1

Therefore c = 1
2(A−B)

, where A = tan−1
( π/2+θr

2
−α

β

)
and B =

tan−1
( −π/2+θr

2
−α

β

)
. The pdf of the θi is:

p(θi) =
1

2 cos θi(A− B)

β(
θi+θr

2 − α
)2

+ β2

The cdf can be computed by integrating the pdf

P (θi) =

∫ θi

−π
2

c

 β

(
θ′
i
+θr

2 − α)2 + β2

 1

cos θ′i
cos θ

′
idθ
′
i

=
tan−1

( θi+θr
2
−α

β

)
− B

A− B

By inverting the cdf , we can sample θi, given a uniform random variable ξ from [0, 1]

θi = 2β tan(ξ(A− B) + B) + 2α− θr

B NR and NTRT-g Sampling Derivation

Given a uniform random variable ξ from [0, 1], we want to draw a sample of φ from
pdf .

p(φ) ∝ cos
φ

2

The normalization gives that∫ π

−π
c cos

φ

2
dφ = c

∫ π
2

−π
2

2 cos xdx = 2csin x
∣∣∣π2
−π

2

= 4c = 1

Therefore, c = 1/4. The pdf of φ is

p(φ) =
1

4
cos

φ

2

The cdf can be computed by integrating the pdf∫ φ

−π

1

4
cos

φ′

2
dφ =

1

2
sin x

∣∣∣φ2
−π

2

=
1

2

(
sin

φ

2
+ 1
)

By inverting the cdf , we can sampleφ, given a uniform random variable ξ2 from [0, 1]

φ = 2 sin
−1

(2ξ2 − 1)

4 Then we can compute φi = φr − φ. We also need to transform the pdf p(φ) to

p(φi) and it can be proved that p(φi) =
∣∣∣ dφidφ ∣∣∣−1

p(φ) = p(φ)

C NTT Sampling Derivation

Given a uniform random variable ξ from [0, 1], we want to draw a sample of φ from
pdf .

p(φ) ∝
γTT

(φ− π)2 + γ2
TT

The normalization gives that∫ 2π

0

c

[
γTT

(φ− π)2 + γ2
TT

]
dφ = c

[
tan
−1

(
φ− π
γTT

)]∣∣∣∣2π
0

= 1

Therefore c = 1
CTT

whereCTT = 2 tan−1 (π/γTT). Then we can compute the pdf
of φ

p(φ) =
1

CTT

[
γTT

(φ− π)2 + γ2
TT

]
The cdf can be computed by integrating the pdf∫ φ

0

c

[
γTT

(φ′ − π)2 + γ2
TT

]
dφ
′
=

1

CTT

[
tan
−1

(
φ′ − π
γTT

)]∣∣∣∣φ
0

=
tan−1

(
φ−π
γTT

)
CTT

+
1

2

By inverting the cdf , we can sample φ, given a uniform random variable ξ from [0, 1]

φ = γTT tan

[
CTT

(
ξ −

1

2

)]
+ π

Then we can compute φi = φr − φ and p(φi) = p(φ)

D Ng Sampling Derivation

Given a uniform random variable ξ from [0, 1], we want to draw samples of φ from a
pdf .

p(φ) ∝
γg

(|φ| − φg)2 + γ2
g

We first use ξ to randomly pick a half of the lobe and remap the random variable ξ2
back to [0, 1]. Then we sample φ in the domain [0, π/2], and change its sign to its
corresponding half of the lobe. The normalization gives∫ π/2

0

c

[
γg

(|φ| − φg)2 + γ2
g

]
dφ = c

[
tan
−1

(
φ− φg

γg

)]∣∣∣∣π/2
0

= 1

Therefore c = 1
Cg−Dg

where Cg = tan−1
(
π/2−φg
γg

)
and Dg =

tan−1
(−φg
γg

)
. we can compute the pdf of φ

p(φ) =
1

Cg −Dg

[
γg

(φ− φg)2 + γ2
g

]

The cdf can be computed by integrating the pdf∫ φ

0

c

[
γg

(φ′ − φg)2 + γ2
g

]
=

1

Cg −Dg

[
tan
−1

(
φ′ − φg

γg

)]∣∣∣∣φ
0

=
tan−1

(
φ−φg
γg

)
−Dg

Cg −Dg
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We can sample φ, given a uniform random variable ξ from [0, 1]

φ = γg tan(ξ(Cg −Dg) +Dg) + φg

Then we can compute φi = φr ± φ. The sign of φ is determined by the value of the
original random variable ξ before remapping. Moreover we also need to transform the
pdf to account for the fact that we remapped the random variable.

p(φi) =
1

2
p(|φ|) =

1

2(Cg −Dg)

[
γg

(|φr − φi| − φg)2 + γ2
g

]
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