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Abstract

We present a fast and robust narrow-phase continuous collision de-
tection (CCD) method. Our algorithm is based on the method orig-
inally proposed by [Provot 1997]. However, the traditional method
has been reformulated analytically so as to obtain more robust col-
lision detection results than other previous CCD methods available,
while surpassing the performance of the traditional cubic solver-
based methods. The novelties of our method are twofold. First, a
new area inclusion test is introduced and analyzed to prove it does
not miss a collision, proving our method is robust in terms of false
negatives. Second, we provide a dimensional reduction technique
to handle degenerate cases exhaustively, thereby enabling it to han-
dle such challenging cases without incurring unnecessary compu-
tational overhead. Using a number of benchmark tests performed
with both randomly generated and publicly available data sets, we
demonstrate that our proposed method, fastCCD, is both more ef-
ficient and more accurate than the existing techniques exactCCD
[Brochu et al. 2012], safeCCD [Wang 2014], and openCCD [Kim
and Yoon 2009].

CR Categories: I.3.7 [Computer Graphics]: Three-dimensional
Graphics and Realism—Animation

Keywords: cloth simulation, rigid body simulation, continuous
collision detection

1 Introduction

Continuous collision detection (CCD) is a fundamental technique
used in various applications areas, including dynamic simulations
and ray tracing in computer graphics and games, and path-finding in
artificial intelligence. In general, CCD is performed in two phases:
a broad phase and a narrow phase [Mirtich 1997a]. Given n pairs of
collision candidates, the naive CCD approach would induce O(n2)
CCD operations [Hahn 1988; Moore and Wilhems 1988]. In the
broad phase, the potential colliding pairs are culled. There are
numerous research papers on culling methods such as sweep and
prune [Witkin and Baraff 1997], hierarchical spatial subdivision
[Mirtich 1997a], non-penetration filters [Tang et al. 2010b] and par-
allel spatial subdivision [Erleben et al. 2005]. Once irrelevant col-
lision pairs have been culled in the broad phase, the actual collision
detection is performed for each remaining pair in the narrow phase.
In the narrow phase, approximate or non-exact CCD methods are
typically used in practice. In this paper we focus only on narrow
phase continuous collision detection.

The narrow phase of CCD has been one of the performance bot-
tlenecks in large-scale dynamic simulation. The goal for CCD is
to design an algorithm that achieves fail-safe collision detection,
namely the correct detection of all collisions with minimal com-
putation. In this paper we propose a method which reports exact
collision detection results when using a sufficiently small error tol-
erance, but using a fraction of the computation time needed by other
methods. Figure 1 and Table 1 show the performance of our algo-
rithm relative to exactCCD and safeCCD.

Inaccurate algorithms can miss collisions (false negatives) or flag

Figure 1: Comparison of CPU time to execute fastCCD versus ex-
actCCD, where 10 Million random data collision pairs are tested.
From an error tolerance of 10−9 and lower, the collision detection
result from fastCCD matches with the one from exactCCD while
fastCCD is significantly faster.

Table 1: For 10 million random data collision pairs, listed are
number of detected collisions and computation time of FastCCD.
Note that exactCCD reports 749, 985 collisions in 37.4 sec and
safeCCD reports 918, 663 collisions in 13.6 sec with 19% of false
positives. Note that exactCCD reports only odd root collisions.

Error Tolerance 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11 1e-12 1e-13

Time (in sec) 7.85 7.9 8.396 8.6 9 9.4 9.8 10

Odd Collisions 750127 750005 749987 749985 749985 749985 749985 749985

Even Collisions 22790 22779 22779 22779 22779 22779 22779 22779

non-colliding cases (false positives). In particular, in dynamic sim-
ulations, false negatives can result in unacceptable simulation re-
sults, in which case a node or edge can penetrate into a face or
edge, respectively, and from then on, this node or edge stays on
a wrong side. This incidence eventually makes an object appear
pinched in a simulation. In ray tracing, a false negative can cause
light slip-through and leaking [Woop et al. 2013]. False positives
invoke a collision response when there is no actual collision. While
the consequences of false positives are less severe, excessive false
positives can cause an unnecessary slowdown in simulations and
make a simulation unsuccessful.

Along this line of research, a major advancement was made
by [Brochu et al. 2012] who introduced a geometrically exact
continuous collision detection method (exactCCD). However, their
method is computationally expensive. In order to perform geomet-
rically exact collision detection, the method transforms the para-
metric domain of the time and barycentric coordinates, and does
ray casting to check the parity. The proposed method extrapolates
a problem to multiple folds as much as the number of faces in the
transformed domain. This consequently makes the method slower
by an order of magnitude than the other non-exact collision detec-
tion methods (see §5 in [Brochu et al. 2012]). In addition, their
method inherently ignores the case of nonzero even root count col-
lisions between a point and a face and between two edges. Further-
more, the method inherently reports only whether there is a col-
lision, without providing the time of contact, which is generally
needed for resolving collisions [Harmon et al. 2008].



[Wang 2014] proposed safeCCD with a set of modifications to basic
CCD methods to eliminate false negatives, while still being faster
than exactCCD. They derive a set of provably safe tolerance set-
tings from a single upper bound B on the relative positions and
velocities encountered during simulation. Their proposed modi-
fication is to first apply the regular cubic root solver and then to
apply additional routines to handle degenerate or nearly degenerate
cases exhaustively. They demonstrate that these changes only cause
a modest increase in execution time while still running faster than
exactCCD, but do increase the number of false positives by as much
as 10 percent in their experiments.

In this paper, we identify a number of major issues in the tradi-
tional CCD cubic solver approach [Provot 1997] and provide reme-
dies, thereby obtaining a more optimal CCD algorithm. Like [Wang
2014], we also consider the problem of how to obtain a comprehen-
sive error bound in coplanarity root-finding, barycentric coordinate
calculations, and distance calculations. In comparison, we have
obtained a tighter error bound than safeCCD, which limits the in-
troduction of false positives but is still large enough to avoid false
negatives. Note that the challenge of identifying a point location
in degenerate polygons is studied by [Schirra 2008] and inaccu-
rate treatment of such degenerate cases is well-known to lead to
incorrect collision detection results. By carefully observing the ge-
ometric meaning of degeneracy in CCD and understanding where
the error comes from, we came up with a novel CCD method that
handles degeneracy comprehensively with a tight bound on error
tolerance.

Our contribution in this paper is two-fold. Firstly, we introduce a
novel area inclusion condition which allows us to obtain a compre-
hensive error bound. This new condition allows us to analyze how
the error in finding coplanarity time can affect the error in flagging
positive for the contact at the approximate coplanarity time. Based
on this analysis our method avoids false negatives, which would be
difficult when the barycentric coordinates approach is used. The
critical achievement of our method is to incorporate a consistent
error tolerance which users can control based on the needs of the
application while guaranteeing not to produce any false negatives.
Secondly, for both algebraic and geometric degeneracy, we present
dimensional reduction techniques for degenerate cases. This novel
approach simplifies the solution space for the degenerate cases and
provides a method to solve such challenging cases in the CCD
problem with minimal computation. Our method is clearly demon-
strated to provide the robust and accurate results that the exactCCD
method offers, but it also provides the contact time and maintains
the speed of non-exact CCD methods [Hubbard 1994]. Our work
excludes the effect of rounding errors, the numerical inaccuracy in
square root computations, and the error introduced from file input
and output. These are beyond the scope of this paper.

2 Related Work

There are a number of related research projects on collision detec-
tion in the graphics community and it is not possible to list all the
relevant research in this paper. To be more concise and focused, we
shall list only the most recent work in CCD, which is relevant to
our current techniques.

In [Lin and Manocha 1993; Mirtich 1997b], the narrow phase col-
lisions between polyhedra are computed using the closest feature
points using time coherency. The first time of contact with a thresh-
old using local advancement is used for detecting collisions [Tang
et al. 2010a]. However, as simulations get more realistic, exact col-
lision detection between primitive geometry pairs like face-point or
edge-edge are more important. Hence in this paper we focus on
narrow phase collisions between primitive geometry pairs.

The cubic-solver approach, which was introduced to the field by
[Provot 1997], is a constructive geometric approach [Brochu et al.
2012] and it has been widely used by the CCD community. To
compute the actual time of contact between primitive geometry
pairs, [Provot 1997] suggested a method using coplanarity and in-
clusion tests using barycentric coordinates. In Provot’s method, a
cubic polynomial equation is formed from the coplanarity condi-
tion. Once the time of coplanarity is found by solving this equa-
tion, the actual position of each point is computed using the found
coplanarity time. Then these positions are used to determine if two
geometric entities are actually in collision at that coplanarity time.
In such calculations, error analysis is essential to obtain provably
correct algorithms, but so far has been missing [Brochu et al. 2012].
The method has in fact been improved on by many researchers (see
[Bridson et al. 2002] and references cited therein). However, until
now, this approach has not had any control over the error bound. It
is also non-deterministic in degenerate cases. The main purpose of
our paper is to overcome these well-known shortcomings and our
method is the first cubic solver-based method that presents reme-
dies. Provably, the proposed method does not produce any false
negatives.

Our method is not an exact CCD method, since it has a notion of
error tolerance. However, numerical experiments demonstrate that,
as theory predicts, the proposed method does not produce any false
negatives and the collision test results are coincident with that of
exactCCD [Brochu and Bridson 2009; Brochu et al. 2012] for the
odd root count collision cases. Note that exactCCD can only de-
tect collisions with an odd number of roots to the cubic temporal
equation.

3 Notation and Problem Description

In this section we introduce notation following [Yap 2004] and then
describe the problems of interest. We define convex hulls from ge-
ometric primitives, i.e. faces, edges, and points, and interpret a
collision as an intersection between two convex hulls.

Given a point p ∈ IR3, whose coordinates are (px, py, pz) ∈ IR3,
we shall denote it by

p = Point(px, py, pz). (1)

We shall also denote by CHull(R) a convex hull obtained by a set of
pointsR = {pi}ni=1,R in IR3 and denote by |R|, the cardinality of
the set R. For notational convenience, whenever we write a bold-
faced lower-case letter, it will be a point in IR3.

Definition 3.1 (Linear Movement, the Point) We consider a one
parameter family of zero-dimensional convex hulls or a point mov-
ing in time:

φ : t ∈ [0, 1] 7→ CHull(pt). (2)

We say that the point moves linearly in time whenever it has a fixed
velocity, namely, it can be written as follows :

φ(t) = pt = p0 + tvp (3)

with p0 and vp fixed ∈ IR3.

Definition 3.2 (Linear Movement, General Convex Hull) We
consider one parameter family of a general convex hulls moving in
time given as follows :

φ : t ∈ [0, 1] 7→ CHull(Rt), (4)

where Rt = (pt1, · · · ,ptn). Note that the mapping φ describes
the movement of CHull(Rt) in time in the three dimensional Eu-
clidean space IR3. The superscript given for R indicates that



Rt = (pt1, · · · ,ptn) is a set of points, each of which is dependent on
time. We say that the convex hull moves linearly in time whenever
each point CHull(pti) moves linearly in time for all i = 1, . . . , n.

Definition 3.3 (Contact of Two Convex Hulls) Given two sets
RA andRB of points, we consider two corresponding linearly mov-
ing convex hulls, CHull(RA) and CHull(RB). We say that two con-
vex hulls are in contact at time t iff there exists a point pt which is
included in both convex hulls at time t.

From this definition, we indicate that a collision of two convex hulls
is interpreted as an intersection between two convex hulls. Given
this definition of a contact, we shall investigate the following two
problems :

Question 3.1 (Face-Point) Given two sets RtA and RtB of points
such that |R0

A| = 3 and |R0
B | = 1, we consider two corresponding

linearly moving convex hulls,

CHull(RtA) and CHull(RtB),

in time interval [0, 1]. We wish to find the earliest time t of contact
if it exists.

Question 3.2 (Edge-Edge) Given two sets RA and RB of points
such that |R0

A| = |R0
B | = 1, we consider two corresponding lin-

early moving convex hulls,

CHull(RtA) and CHull(RtB),

in time interval [0, 1]. We wish to find the earliest time t of contact
if it exists.

Throughout this paper we shall use the standard notation × for the
cross product and ◦ for the dot product. The standard Euclidean
norm will be denoted by ‖ · ‖.

We present a fast and robust narrow-phase continuous collision de-
tection (CCD) method between a linearly moving face and point
or between two linearly moving edges within an arbitrarily small
user-defined error tolerance Etol.

4 Detection of Contact between a Linearly
Moving Face and a Point

We consider a linearly moving face and point from the time t = 0 to
the time t = 1. A face, the convex hull of a set of three pointsRt =
{at,bt, ct}, is denoted by CHull(Rt). At time t, the face and the
point are represented as CHull(Rt) and a point pt. At the time of
contact t = t, a face and a point satisfy the following two properties
(which are equivalent when a face and a point are in contact).

F-P 1: Four corner points {at,bt, ct,pt} are coplanar.

F-P 2: The point pt belongs to CHull(at,bt, ct).

The coplanarity in F-P 1 can be represented as the following math-
ematical equation:

P(t) =
{
(at − pt)× (bt − pt)

}
◦ (ct − pt). (5)

Eq. (5) is a cubic equation that can be solved analytically or nu-
merically to find collision times t where P (t) = 0. At this step,
an approximate root t̃ = t + ε can generally be estimated which
is close to the exact collision time plus some numerical error ε in-
troduced by the use of iterative root-finding methods [Wilkinson
1963]. Once the approximate coplanarity time t̃ is known, we in-
vestigate whether there is really a contact by checking the condi-
tion F-P 2. Typically this inclusion test is done by computing the

barycentric coordinate of pt̃ within CHull(at̃,bt̃, ct̃). It is well-
known that careful attention must be given to this stage since prob-
lems such as false negatives have been reported when using an in-
appropriate error tolerance [Brochu and Bridson 2009]. Note that it
is this step where an additional tolerance must be assigned, which
makes the CCD dependent on multiple and potentially inconsistent
tolerances.

4.1 Inclusion Test based on Area Conditions and Con-
sistent Error Tolerance

Typically, the coplanarity time is computed only approximately.
This causes problems for the cubic solver approach, because the
inclusion test is performed with an approximate coplanarity time
t̃. Computing barycentric coordinates given the approximate copla-
narity time t̃, along with handling the degeneracy in the coplanarity
relations, makes the comprehensive error analysis quite challeng-
ing, thereby unavoidably introducing false positives or false nega-
tives.

We shall demonstrate how to avoid the false negative in the fol-
lowing discussion. In our method, we introduce the area inclusion
condition and provide the error analysis. We note that the area-sum
test for the intersection between point-in-polygon is well-known
[Chen and Townsend 1987] and dates back to [Nordbeck and Ryst-
edt 1967]. However, their appropriate use in CCD applications do
not seem to be available in the literature. In particular, the error
analysis provided in this section indicates that once the contact hap-
pens and the approximate coplanarity time t̃ is given within Etol

from the exact coplanarity time t, the contact must be reported if
the new condition is met under the consistent error tolerance, i.e.,
Etol times some initial local mesh size and the size of velocity dif-
ferences of the face and points. This condition is given in a way that
all the possible cases are included exhaustively regardless of the de-
generacy arising from collinearity. Provably, the proposed method
does not report any false negatives for any given error tolerance
initially given for the cubic solver, unlike the classical barycentric
coordinate approaches. The method can be said to be arbitrarily
accurate in finding and detecting the contact as well as the contact
time if one can solve the coplanarity time accurately. More impor-
tantly, our method does not require multiple tolerances. Rather, a
single tolerance for the cubic equation solver can be given, which
is consistently used to handle the inclusion test.

4.1.1 Approximate coplanarity time

Numerically one can find the solution to Eq. (5) in many different
ways. Appropriate root finding methods include iterative methods
such as the bisection or Householder methods [Householder 1970].
Generally, numerical solutions to the cubic equation t̃ are accurate
to within an error tolerance Etol [Wilkinson 1963; Zucker 2008].
Our focus is to show how this error tolerance Etol can be used con-
sistently to guarantee not to produce false negatives. Once Etol

is set, we can deduce the upper bound of the possible error in the
inclusion test (see Appendix A). To find an approximate coplanar
time t̃, we tested numerous root finding methods in our experi-
ments. Householder iteration provided the best performance, and
this is method used exclusively in the benchmarks reported below.

4.1.2 Area Inclusion Test

For the inclusion test, we introduce a new and different condi-
tion from what is used for the barycentric coordinate approach.
Namely, the condition F-P 2, shown conceptually in Figure 2, can
be checked by the following area condition:



F-P 2̂: At the time of contact, t, the sum of the areas of
CHull(at,bt,pt), CHull(at, ct,pt) and CHull(bt, ct,pt) is
equal to that of CHull(at,bt, ct).

Figure 2: Two equivalent sets of areas in the vertex and face inclu-
sion test. In contact, the area of a face is equivalent to the sum of
the areas of three faces made by the contact point with respect to
each edge.

To simplify our notation, we shall denote the area of the convex hull
obtained from three points CHull(x,y, z) by Area(CHull(x,y, z)).
Our area condition and its validity are based on the following
Lemma:

Lemma 4.1 Let t̃ and t be the approximate and exact coplanarity
times, respectively, with |t̃ − t| ≤ Etol. Let vx be the velocity of
the linearly moving point xt. Then the following holds true:

Area(CHull(xt̃,yt̃, zt̃)) ≤ Area(CHull(xt,yt, zt)) + E(x,y, z),

where x,y, z can be any a,b, c or p and

E(x,y, z) = EtolC1C2 +
1

2
E2

tolC
2
2 , (6)

with ‖ · ‖ being the standard Euclidean norm in IR3, and

C1 = max
α 6=β∈{x0,y0,z0}

‖α− β‖+ max
t∈[0,1]

max
α 6=β∈{x,y,z}

t‖vα − vβ‖,

C2 = max
α 6=β∈{x,y,z}

‖vα − vβ‖.

The consequence of Lemma 4.1 provides the theoretical error
bound for the contact case.∣∣∣Area(CHull(at̃,bt̃,pt̃)) + Area(CHull(bt̃, ct̃,pt̃))

+ Area(CHull(ct̃,at̃,pt̃))− Area(CHull(at̃,bt̃, ct̃)
∣∣∣

≤ E(a,b,p) + E(b, c,p) + E(c,a,p) + E(a,b, c),(7)

which is because at the time of contact t = t, the following identity
holds true:

Area(CHull(at,bt, ct)) = Area(CHull(at,pt, ct))

+Area(CHull(at,bt,pt)) + Area(CHull(bt, ct,pt)).

The area condition indicates that if there is contact, then the condi-
tion (7) must be satisfied. In other words, it is a sufficient condition
to detect collisions. We remark that the aforementioned bound is
rigorous enough in the sense that unlike the classical barycentric
coordinate cases it does not produce any false negatives. It is also
more consistent, since our methodology can employ only a single
tolerance, which is needed only for the cubic solver. Note that C1

and C2 pertain to the size of velocity differences like ‖va − vp‖
and initial edge lengths like ‖c0−a0‖ and they are all computable.

While condition (7) does not allow any false negatives, it may report
false positives within the given tolerance. Such false positives are
the cases where a point and face are close enough to satisfy the
condition (7) but not in geometrically exact contact. However, in
our method the error tolerance can be arbitrarily small. Hence users
can adjust the error tolerance for their application needs.

4.2 Treatment of Algebraically Degenerate Cases

In solving Eq. (5), we can encounter algebraically degenerate cases
when all four coefficients of the polynomial are zero. We handle
such cases by considering the geometric meaning of the polynomial
coefficients. Without correctly handling these cases, we could miss
collisions. By rearranging Eq. (5), we have

F (t) = [(v × u) ◦w] t3

+ [(α× u+ v × β) ◦w + (v × u) ◦ γ] t2

+ [(α× u+ v × β) ◦ γ + (α× β) ◦w] t

+(α× β) ◦ γ = 0, (8)

where

α = a0 − p0,

β = b0 − p0,

γ = c0 − p0,

v = a1 − a0 − (p1 − p0),

u = b1 − b0 − (p1 − p0),

w = c1 − c0 − (p1 − p0).

Figure 3: Initially a0,b0, c0 and p0 are coplanar, but p0 is not in
the convex hull generated by the other three points. At the time t, it
is now in the convex hull of three points at,bt and pt

Let all four coefficients of Eq. (5) be zero. Then P (t) = 0 re-
gardless of time t. In other words, the four points remain coplanar
throughout the interval [0, 1]. From this observation we know that
only the following two cases can lead to a contact:

Case 1: The face and the point are already in contact at time t = 0.

Case 2: The face and the point are not in contact initially but the
point is in contact with at least one edge of the face during
(0,1].

Therefore we now know that in such cases the problem can be re-
duced to a collision between a line segment and a point.

4.2.1 Dimensional Reduction Techniques

For the algebraically degenerate cases, we are able to reduce the
CCD problem to solving three quadratic equations. Without loss of
generality, we shall assume pt is colliding with the edge connecting
at and bt, which results in the following equation:

(at − pt)× (bt − pt) = 0. (9)

Eq. (9) is a quadratic equation given by

(v × u)t2 + (α× u+ v × β)t+α× β = 0, (10)

where

α = a0 − p0, β = b0 − p0,

v = a1 − a0 − p1 + p0,

u = b1 − b0 − p1 + p0.



Figure 4: Two linearly moving edges meet at the point of contact.

Two similar equations from the other edges can be derived as well.
Roots of these three equations have to be checked in order to decide
the earliest detection times for all three edges.

We would like to remark that another algebraic degeneracy can oc-
cur for Eq. (10): when all three coefficients are zero, all three points
are collinear throughout the interval. In such cases, to have a con-
tact it is the case that either 1) the three points are already in contact,
or 2) the point meets the end point of an edge within the interval.
Here we reduce our problem domain one step further. Note that
since we are interested in the first contact, we have to pick the ear-
liest root among identified roots.

5 Detection of Contact between Two Linearly
Moving Edges

Similarly to the face-point case, we formulate our methodology for
edge-edge contact detection. We consider two line segments or
edges that are moving linearly from time t = 0 to 1. The two
moving edges are CHull(RtA) with RtA = {atb,ate} and CHull(Rtb)
with RtB = {btb,bte}. Note that again, the argument t denotes the
time belonging to the interval [0, 1] and each point is in IR3. For
example, atb = ((atb)x, (a

t
b)y, (a

t
b)z)

T ∈ IR3.

Given any two points p0 and p1, we consider the line connecting
them and starting at p0:

pt = p0 + t(p1 − p0). (11)

We have the following relations:

atb = a0
b + t(a1

b − a0
b),

ate = a0
e + t(a1

e − a0
e),

btb = b0
b + t(b1

b − b0
b),

bte = b0
e + t(b1

e − b0
e).

Figure (4) shows two linearly moving edges which meet at a point
at time t. We would like to remark that at the time t of contact, the
following two conditions are met.

E-E 1: Four corner points {atb,ate,btb,bte} are coplanar.

E-E 2: The point of contact belongs to CHull(atb,a
t
e,b

t
b,b

t
e).

We note that the condition E-E 1 can be written as{
(ate − atb)× (btb − atb)

}
◦ (bte − atb) = 0. (12)

Similar to the face-point case, to use a consistent error tolerance we
introduce the alternative condition E-E 2̂:

E-E 2̂: The sum of areas for CHull(atb,a
t
e,b

t
b) and

CHull(atb,a
t
e,b

t
e) is equal to the sum of areas for

CHull(btb,b
t
e,a

t
b) and CHull(btb,b

t
e,a

t
e).

Figure 5: In contact, the sum of areas by CHull(a,b, c) and
CHull(b,d, c) is equal to that of CHull(a,d, c) and CHull(a,b,d).

This is shown schematically in Figure (5). Similar to the face-point
case, degenerate cases can be handled based on the polynomial co-
efficients using dimensional reduction. Only a small change is re-
quired in dimensional reduction since collinearity has to be checked
for each edge.

6 Results

In this section we compare the results of vertex-face collision de-
tection obtained by our method with the other CCD methods such
as exactCCD [Brochu et al. 2012], safeCCD [Wang 2014] and
openCCD [Kim and Yoon 2009]. For consistency, each method
is compared using the same platform (hardware and operating sys-
tem) that was used for the original implementation. Benchmarks
are performed with random data and also with dynamic data. The
dynamic data used in our benchmarks is from [Tang et al. 2009;
Yoon et al. 2007; Tang et al. 2012]. For random data, each position
at time t = 0 and 1 is generated within the unit cube.

First, we compare our method to exactCCD and safeCCD with ran-
dom data. Typically the cubic equation we get from random data
is well shaped. To implement the cubic solver, we first identify the
local minima and maxima on the interval [0, 1] using the derivatives
of the cubic equation. We then check whether f(t) changes sign on
each interval, and if the sign changes then we know a root exists
and we invoke the Householder routine to find its value.

Given an interval, one can have up to three contacts, since a copla-
narity equation can have up to three roots. However, exactCCD
only reports a collision for cases with an odd number of roots.
Hence, we modify our method to collect the even and odd root
count collisions separately. This alteration does not affect the per-
formance since only the interpretation changes for a given collision
result. For 10 million random data collision pairs, our method took
about 7.8–10 sec while exactCCD took 37.4 sec to produce the ex-
act same results for odd collisions. For safeCCD it was 918,663
collisions in 13.6 sec. The coefficient B in safeCCD is computed
for each collision pair while the relative velocities are used to get
the maximum of velocity magnitudes.

This is shown in Figure 1 and Table 1. Our method is not only
faster but also provides more details like the time of contact and it
reports collisions corresponding to an even number of roots. The
comparison was using performed using Mac OS X (Version 10.9.2)
running on a 3.2 GHz Intel Core i5 processor with 8GB 1600 MHz
DDR3 memory and Clang LLVM C++ compiler. All floating point
data is stored in double precision.

Table 2 and Figure 7 show the comparison of results using dynamic
data. The narrow-phase collision detection candidates among face-
vertex pairs have been culled using an axis-aligned bounding box
test. The broad-phase culling results are pre-computed and stored
so they do not affect the benchmark timing results. Only the pre-
computed narrow-phase candidates are tested in the benchmarks. In
fastCCD, we used an error tolerance of Etol = 10−9.

Our benchmarks show that fastCCD consistently outperformed ex-
actCCD and safeCCD in terms of computational efficiency and ac-



curacy in all tests using UNC dynamic data. We observed that the
performance advantage of fastCCD over exactCCD is proportional
to the number of degenerate cases. Note that at times exactCCD and
fastCCD report different numbers of collisions. For those cases we
have investigated so far, these different results are the cases of near
collisions but not actual collisions (false positives). Since the error
tolerance in exactCCD is not defined , it is unknown how these near
collisions are identified as collisions in exactCCD.

We compare our method with openCCD using random data col-
lision pairs. For this comparison, we modify openCCD to ex-
pose and directly call the internal Intersect VF function. This
avoids unnecessary overhead in traversing their internal tree struc-
ture. As shown in Figure 8, fastCCD is about 4.5-5.6 times faster
than openCCD. Note that in this test, all the even root count col-
lisions are counted as well. The comparison with openCCD has
been performed on Windows 8.1 running on an Intel Core i7-4770
CPU @3.40GHz with 8GB RAM and a 64-bit operating system.
fastCCD is implemented using Visual Studio 2013 in double pre-
cision, while openCCD is compiled in Visual Studio 2008 in float
precision. We do not know how much this affects the performance
comparison. Both methods are compiled with Release-Win32 op-
tions.

7 Discussion

In this paper, we resolve the main issues in the cubic-solver-based
narrow-phase CCD method by providing a consistent error toler-
ance and comprehensively handling geometric degeneracy. Our
method is provably free of false negatives when using a consistent
error tolerance. Benchmarking shows that our method is faster than
other known methods, while providing detailed collision informa-
tion like the time of contact and even root count for collisions. In
this paper, we assumed a linear trajectory for primitives. Curved
trajectories will be an interesting area of future research, especially
for applications with large time intervals.

A Proof of Lemma 4.1

In this section we provide the proof of the Lemma 4.1. Let t̃ and t
be the solution to the cubic equation obtained with tolerance Etol

and the exact coplanarity time, respectively. We note that for x
being a,b, c or p, since

xt = x0 + tvx and xt̃ = x0 + t̃vx

the following inequality holds true :

2Area(CHull(xt̃,yt̃, zt̃)) = |(yt̃ − xt̃)× (zt̃ − xt̃)|

= |[yt − xt + (yt̃ − yt)− (xt̃ − xt)]

×[zt − xt + (zt̃ − zt)− (xt̃ − xt)]|

≤ 2Area(CHull(xt,yt, zt)) (13)

+|(yt − xt)× [(zt̃ − zt)− (xt̃ − xt)]|

+|[(yt̃ − yt)− (xt̃ − xt)]× (zt − xt)|

+|[(yt̃ − yt)− (xt̃ − xt)]× [(zt̃ − zt)− (xt̃ − xt)]|.

The last three terms in the aforementioned inequality can be bound
by the following expression:

Etol(‖y0 − x0‖+ t‖vy − vx‖)(‖vz − vx‖)
+Etol(‖z0 − x0‖+ t‖vz − vx‖)(‖vy − vx‖) (14)

+E2
tol‖vy − vx‖‖vz − vx‖.

This completes the proof of Lemma 4.1.

Figure 6: Benchmark scene visualization provided by [Tang et al.
2012]. (a) cloth-ball simulation model, (b) N -body simulation, (c)
exploding dragon and bunny model and (d) lion.

Figure 7: Ratio of execution time for fastCCD to openCCD when
processing collisions from the UNC dynamic scene data.

Table 2: Detailed benchmark results for the UNC dynamic scene
data. Degenerate cases occur when all coefficients of a cubic equa-
tion are zero. ZeroA cases occur when the coefficient of t3 is zero,
meaning any two of four velocities are parallel.

Lion Cloth-ball N-Body(Balls 16) Dragon-Bunny
# of frames 44 93 75 15
Total Pairs 227,217,729 31,170,312 427,022,018 1,343,153,663

Degenerate Cases 0.001% 11% 0% 0 %
ZeroA Cases 5% 0.3% 79 % 0.5%

Num of Collisions 1,734,172 65,182 288,694 2,836,492
fastCCD Time(sec) 35.6 6.4 64.8 280.3

Error Tol. 1 × 10−9 1 × 10−9 1 × 10−9 1 × 10−9

exactCCD Num of Collisions 1,734,449 65,182 298,671 2,843,949
Time(sec) 97.3 10.8 81.6 356.45

safeCCD Num of Collisions 2,434,539 73,279 535,830 5,690,344
Time(sec) 55.8 10.5 108.6 546.4

Figure 8: Ratio of execution time for fastCCD to openCCD when
processing one million randomly generated collision pairs. With
this input data openCCD found 77192 collisions in 8.704 sec. For
approximately Etol = 1 × 10−9 or lower, fastCCD produces the
same result (shown in the highlighted region). For lower values of
the error tolerance, fastCCD reports a small number of additional
collisions.
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